Publications by authors named "Emiko Kinoshita-Kikuta"

Article Synopsis
  • Phosphorylation status is important for understanding biological processes in cells, and various analytical methods exist to identify phosphopeptides.
  • The study evaluated four different strategies for enriching phosphopeptides using titanium dioxide (TiO) and Phos-tag ligand particles from digests before mass spectrometry analysis.
  • The results showed that while TiO and Phos-tag methods were effective in enriching phosphopeptides, the Phos-tag agarose beads provided the highest number of identified phosphopeptides, highlighting the value of using multiple enrichment strategies in phosphoproteomic studies.
View Article and Find Full Text PDF

Phos-tag is a functional molecule that selectively captures a phosphate monoester dianion in neutral aqueous solutions. The affinity of Phos-tag for phosphate monoester dianions is more than 10,000 times greater than that for other anions present in living organisms, such as carboxylic acid anions. We have developed and applied useful techniques for phosphoproteomics based on Phos-tag.

View Article and Find Full Text PDF

In a bacterial two-component system (TCS), signals are generally conveyed by means of a His-Asp phosphorelay. Each system consists of a histidine kinase (HK) and its cognate response regulator (RR). The His- and Asp-bound phosphate groups are extremely unstable under acidic conditions easily to be hydrolyzed within a few hours.

View Article and Find Full Text PDF

The production of heterologous proteins is an important procedure for biologists in basic and applied sciences. A variety of cell-based and cell-free protein expression systems are available to achieve this. The expression system must be selected carefully, especially for target proteins that require post-translational modifications.

View Article and Find Full Text PDF

ABL, a human tyrosine protein kinase, and its substrate are co-expressed in . Tyrosine phosphorylation of the substrate in was detected using Phos-tag SDS-PAGE. The bacterial co-expression system was used as a field for the kinase reaction to evaluate the enzymatic activity of five types of ABL kinase domain mutants.

View Article and Find Full Text PDF

We describe a standard protocol for phosphate-affinity fluorescent gel staining that uses a fluorophore-labeled dizinc(II) complex of a derivative of the phosphate-binding tag molecule Phos-tag to detect His- and Asp-phosphorylated proteins separated by SDS-PAGE. The procedure permits the quantitative monitoring of phosphorylated histidine kinases (His-phosphoproteins) and their cognate phosphorylated response regulators (Asp-phosphoproteins) in bacterial two-component signaling transduction systems. The total time required for each gel staining operation is about 2 h at room temperature.

View Article and Find Full Text PDF

We describe here a standard protocol for determining the phosphorylation status of protein multiplexes using antibody arrays and a biotinylated Phos-tag with a dodeca(ethylene glycol) spacer (Phos-tag Biotin). The procedure is based on an antibody microarray technique used in conjunction with an enhanced chemiluminescence system, and it permits the simultaneous and highly sensitive detection of multiple phosphoproteins in a cell lysate. By using this procedure, we have demonstrated the quantitative detection of the entire phosphorylation status of a target protein involved in intracellular signaling.

View Article and Find Full Text PDF

Protein N-myristoylation of Src-family kinases (SFKs) is a critical co-translational modification to anchor the enzymes in the plasma membrane. Phosphorylation of SFKs is also an essential modification for regulating their enzymatic activities. In this study, we used Phos-tag SDS-PAGE to investigate N-myristoylation-dependent phosphorylation of SFKs and their non-N-myristoylated G2A mutants.

View Article and Find Full Text PDF

Various chromatographic techniques, combined with mass spectrometry, have been developed for the analysis of impurities in oligonucleotide drugs, but those methods have generally been less focused on possible phosphomonoester-type compounds. Here, we introduce a simple method for separating terminally phosphorylated impurities from parent oligonucleotides by using a phosphate-affinity micropipette tip (Phos-tag tip). All steps for the phosphate-affinity separation (binding, washing, and elution) are conducted in aqueous buffers at neutral pH.

View Article and Find Full Text PDF

Two-component signal transduction systems (TCSs), consisting of a histidine kinase (HK) and its cognate response regulator, are ubiquitous among bacteria and are associated with the virulence of pathogens. TCSs are potential targets for alternative antibiotics and antivirulence agents. It is, thus, very important to determine HK activity in bacterial TCSs.

View Article and Find Full Text PDF

To establish a strategy for identifying protein-N-myristoylation-dependent phosphorylation of cellular proteins, Phos-tag SDS-PAGE was performed on wild-type (WT) and nonmyristoylated mutant (G2A-mutant) FMNL2 and FMNL3, phosphorylated N-myristoylated model proteins expressed in HEK293 cells. The difference in the banding pattern in Phos-tag SDS-PAGE between the WT and G2A-mutant FMNL2 indicated the presence of N-myristoylation-dependent phosphorylation sites in FMNL2. Phos-tag SDS-PAGE of FMNL2 mutants in which the putative phosphorylation sites listed in PhosphoSitePlus (an online database of phosphorylation sites) were changed to Ala revealed that Ser-171 and Ser-1072 are N-myristoylation-dependent phosphorylation sites in FMNL2.

View Article and Find Full Text PDF

In the bacterial signaling mechanisms known as two-component systems (TCSs), signals are generally conveyed by means of a His-Asp phosphorelay. Each system consists of a histidine kinase (HK) and its cognate response regulator. Because of the labile nature of phosphorylated His and Asp residues, few approaches are available that permit a quantitative analysis of their phosphorylation status.

View Article and Find Full Text PDF

The kinase MEK1 is an essential component of the mitogen-activated protein kinase cascades. Somatic mutations that have been identified in the MEK1-coding gene generally enhance kinase activity. Consequently, MEK1 has attracted much interest as a target for cancer therapy to block the aberrant activity.

View Article and Find Full Text PDF

Protein kinases are known to be implicated in various biological phenomena and diseases through their involvement in protein phosphorylation. Therefore, analysis of the activity of protein kinases by examination of their phosphorylation state is important to elucidate their mechanisms. However, a method for analyzing the phosphorylation state of entire protein kinases in cells is not established.

View Article and Find Full Text PDF
Article Synopsis
  • This study explores how thiolate coordination to zinc ions is common in biological molecules like enzymes and proteins.
  • A new method was developed to measure how well ligands, specifically a TAMRA-labeled zinc complex, bind to zinc in solution, revealing significant changes in absorbance and fluorescence when the ligands interact.
  • The binding constants of various thiol-containing ligands were found to be around 10 M, indicating strong affinity, and the study highlights how zinc can stabilize certain reduced forms of compounds against oxidation in an aqueous environment.
View Article and Find Full Text PDF

We introduce two types of fluorescence-quenching assay for alkaline phosphatases (APs) by using a carboxytetramethyl-rhodamine (TAMRA)-labeled phosphate-binding tag molecule (TAMRA-Phos-tag). In the first assay, TAMRA-labeled -phosphorylethanolamine (TAMRA-PEA) was used as an artificial AP-substrate. TAMRA-Phos-tag specifically captured TAMRA-PEA to form a 1:1 complex at pH 7.

View Article and Find Full Text PDF

Phosphorylated peptides are attractive targets in the study of the phosphoproteome. Here, we introduce a simple and convenient micropipette-tip method for the separation of phosphorylated and nonphosphorylated peptides by using a phosphate-binding zinc(II) complex of 1,3-bis(pyridin-2-ylmethylamino)propan-2-olate (Phos-tag). A 200-μL micropipette tip containing 10 μL of swollen agarose beads functionalized with Phos-tag moieties was prepared.

View Article and Find Full Text PDF

In this chapter, we provide a standard protocol for phosphate-affinity sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Zn-Phos-tag SDS-PAGE). This technique uses a dizinc(II) complex of the phosphate-binding molecule Phos-tag in conjunction with a neutral-pH gel system, Tris [tris(hydroxymethyl)aminomethane], and acetic acid (Tris-AcOH), to detect shifts in the mobility of phosphorylated ataxia telangiectasia-mutated (ATM) kinase. This protocol, which employs a 3% (w/v) polyacrylamide gel strengthened with 0.

View Article and Find Full Text PDF

We describe two unique proteins, Escherichia coli ClpX and human histone H2A, that show extremely retarded migrations relative to their molecular weights in Phos-tag SDS-PAGE, despite being nonphosphorylated. Although ClpX separated into multiple migration bands in Phos-tag gels, the separation was not due to phosphorylation. The N-terminal 47-61 region of ClpX was responsible for producing multiple phosphorylation-independent structural variants, even under denaturing conditions, and some of these variants were detected as highly up-shifted bands.

View Article and Find Full Text PDF

Cysteine-containing biomolecules are attractive targets in the study of thiol biology. Here we introduce a novel method for the selective enrichment of thiol-containing molecules using a thiol-capture zinc(II) complex of 1,4,7,10-tetraazacyclododecane (Zn(2+)-cyclen). Recognition of N-acetylcysteine amide by Zn(2+)-cyclen has been studied by potentiometric pH titration, revealing formation of a 1:1 thiolate-bound Zn(2+)-cyclen complex with a large thiolate-affinity constant of 10(6.

View Article and Find Full Text PDF

MEK1, an essential component of the mitogen-activated protein kinase (MAPK) pathway, is phosphorylated during activation of the pathway; 12 phosphorylation sites have been identified in human MEK1 by MS-based phosphoproteomic methods. By using Phos-tag SDS-PAGE, we found that multiple variants of MEK1 with different phosphorylation states are constitutively present in typical human cells. The Phos-tag-based strategy, which makes effective use of existing information on the location of phosphorylation sites, permits quantitative time-course profiling of MEK1 phosphospecies in their respective phosphorylation states.

View Article and Find Full Text PDF

Protein kinase expression and activity play important roles in diverse cellular functions through regulation of phosphorylation signaling. The most commonly used tools for detecting the protein kinase are protein kinase-specific antibodies, and phosphorylation site-specific antibodies were used for detecting activated protein kinase. Using these antibodies, only one kinase was analyzed at a time, however, a method for analyzing the expression and activation of a panel of protein kinases in cells is not established.

View Article and Find Full Text PDF

Tripartite sensor kinases (TSKs) have three phosphorylation sites on His, Asp, and His residues, which are conserved in a histidine kinase (HK) domain, a receiver domain, and a histidine-containing phosphotransmitter (HPt) domain, respectively. By means of a three-step phosphorelay, TSKs convey a phosphoryl group from the γ-phosphate group of ATP to the first His residue in the HK domain, then to the Asp residue in the receiver domain, and finally to the second His residue in the HPt domain. Although TSKs generally form homodimers, it was unknown whether the mode of phosphorylation in each step was intramolecular (cis) or intermolecular (trans).

View Article and Find Full Text PDF

Protein kinases are widely considered to be invaluable target enzymes for drug discovery and for diagnosing diseases and assessing their prognosis. Effective analytical techniques for measuring the activities of cellular protein kinases are therefore required for studies in the field of phosphoproteomics. We have recently developed a highly sensitive microarray-based technique for tracing the activities of protein kinases.

View Article and Find Full Text PDF

Hybrid sensor kinase, which contains a histidine kinase (HK) domain, a receiver domain, and a histidine-containing phosphotransmitter (HPt) domain, conveys signals to its cognate response regulator by means of a His-Asp-His-Asp phosphorelay. We examined the multistep phosphorelay of a recombinant EvgAS system in Escherichia coli and performed in vitro quantitative analyses of phosphorylation by using Phos-tag SDS-PAGE. Replacement of Asp in the receiver domain of EvgS by Ala markedly promoted phosphorylation at His in the HK domain compared with that in wild-type EvgS.

View Article and Find Full Text PDF