Humans exhibit a particular compliant behavior in interactions with their environment. Facilitated by fast physical reasoning, humans are able to rapidly alter their compliance, enhancing robustness and safety in active environments. Transferring these capabilities to robotics is of utmost importance particularly as major space agencies begin investigating the potential of cooperative robotic teams in space.
View Article and Find Full Text PDFCurrent space exploration roadmaps envision exploring the surface geology of celestial bodies with robots for both scientific research and in situ resource utilization. In such unstructured, poorly lit, complex, and remote environments, automation is not always possible, and some tasks, such as geological sampling, require direct teleoperation aided by force-feedback (FF). The operator would be on an orbiting spacecraft, and poor bandwidth, high latency, and packet loss from orbit to ground mean that safe, stable, and transparent interaction is a substantial technical challenge.
View Article and Find Full Text PDF