Publications by authors named "Emiel W A Visser"

An ultrastable, highly dense single-molecule assay ideal for observing protein-DNA interactions is demonstrated. Stable click tethered particle motion leverages next generation click-chemistry to achieve an ultrahigh density of surface tethered reporter particles, and has low non-specific interactions, is stable at elevated temperatures to at least 45 °C, and is compatible with Mg , an important ionic component of many regulatory protein-DNA interactions. Prepared samples remain stable, with little degradation, for >6 months in physiological buffers.

View Article and Find Full Text PDF

Biopolymers such as DNA, RNA, and proteins exploit conformational changes to modulate their function. Although state-of-the-art single-molecule approaches enable identification of conformational states, the transition path and metastable intermediates often remain elusive because they occur on microsecond time scales. Here we introduce a method to probe conformational dynamics with microsecond integration times based on a heterodimer of plasmonic particles.

View Article and Find Full Text PDF

Healthcare is in demand of technologies for real-time sensing in order to continuously guard the state of patients. Here we present biomarker-monitoring based on the sensing of particle mobility, a concept wherein particles are coupled to a substrate via a flexible molecular tether, with both the particles and substrate provided with affinity molecules for effectuating specific and reversible interactions. Single-molecular binding and unbinding events modulate the Brownian particle motion and the state changes are recorded using optical scattering microscopy.

View Article and Find Full Text PDF

Biofunctionalized colloidal particles are widely used as labels in bioanalytical assays, lab-on-chip devices, biophysical research, and in studies on live biological systems. With detection resolution going down to the level of single particles and single molecules, understanding the nature of the interaction of the particles with surfaces and substrates becomes of paramount importance. Here, we present a comprehensive study of motion patterns of colloidal particles maintained in close proximity to a substrate by short molecular tethers (40 nm).

View Article and Find Full Text PDF