Nanometer-sized noble-metal clusters are fabricated on top of alkylthiolate self-assembled monolayers (SAMs) on annealed gold by pulsed laser deposition at elevated pressures. The size distribution of the clusters depends on the metal and on the pressure during the deposition. Scanning tunneling microscopy (STM) and conductive probe atomic force microscopy (CP-AFM) showed that the metal clusters are insulated from the substrate on top of the SAM.
View Article and Find Full Text PDFWe present an implementation of strategies to deposit single-molecule magnets (SMMs) using microcontact printing microCP). We describe different approaches of microCP to print stripes of a sulfur-functionalized dodecamanganese (III, IV) cluster on gold surfaces. Comparison by atomic force microscopy profile analysis of the patterned structures confirms the formation of a chemically stable single layer of SMMs.
View Article and Find Full Text PDFSingle-electron tunneling through Au substrate-alkanethiol-Pd cluster-tip junctions is investigated with scanning tunneling spectroscopy. The measured I(V) curves reveal several characteristic features of the Coulomb blockade, namely, the presence of a Coulomb gap and a Coulomb staircase. By using the orthodox theory of single-electron tunneling, the capacitances and resistances of the double junction system as well as the fractional charge are extracted from the experimental data.
View Article and Find Full Text PDFA cavitand functionalized with four alkylthioether groups at the lower rim, and four tolylpyridine groups on the upper rim is able to bind to a gold surface by its thioether groups, and forms a coordination cage with [Pd(dppp)(CF(3)SO(3))(2)] by its pyridine groups. The cavitand or the cage complex can be inserted from solution into a self-assembled monolayer (SAM) of 11-mercaptoundecanol on gold. The inserted molecules can be individually detected as they protrude from the SAM by atomic force microscopy (AFM).
View Article and Find Full Text PDF