Using thermal CVD, the synthesis of multi-walled carbon nanotubes exhibiting roots anchored directly onto alpha-alumina supports, rather than the catalyst particle, is reported. At such roots, the alignment of the graphitic planes with the support lattice fringes depends on the support crystal structure and orientation. Surface defects may alter the reactivity of the surface or control the anchoring of supported atoms or nanoparticles.
View Article and Find Full Text PDFUltrathin AlN/GaN crystalline porous freestanding nanomembranes are fabricated on Si(111) by selective silicon etching, and self-assembled into various geometries such as tubes, spirals, and curved sheets. Nanopores with sizes from several to tens of nanometers are produced in nanomembranes of 20-35 nm nominal thickness, caused by the island growth of AlN on Si(111). No crystal-orientation dependence is observed while releasing the AlN/GaN nanomembranes from the Si substrate indicating that the driving stress mainly originates from the zipping effect among islands during growth.
View Article and Find Full Text PDFTransparent oxide rolled-up microtube arrays were constructed on Si substrates by the deposition of a pre-stressed oxide layer on a patterned photoresist sacrificial layer and the subsequent removal of this sacrificial layer. These microtubes as well as their arrays can be well positioned onto a chip for further applications, while their dimensions (e.g.
View Article and Find Full Text PDF