Publications by authors named "Emi Kawamoto"

We previously reported that in rat skeletal muscle, disuse (i.e., decreased muscle contractile activity) rapidly increases thioredoxin-interacting protein (TXNIP), which is implicated in the reduced glucose uptake.

View Article and Find Full Text PDF

Acute short duration of disuse induces the development of insulin resistance for glucose uptake in rodent skeletal muscle. Because thioredoxin-interacting protein (TXNIP) has been implicated in the downregulation of insulin signaling and glucose uptake, we examined the possibility that muscle disuse rapidly induces insulin resistance via increased TXNIP mRNA and protein expression. Male Wistar rats were subjected to unilateral 6-h hindlimb immobilization by plaster cast.

View Article and Find Full Text PDF

Acute short-duration physical inactivity induces the development of insulin resistance for glucose uptake in skeletal muscle. We examined the possibility that inactivity rapidly induces muscle insulin resistance via the excessive activation of proinflammatory/stress pathways including those of IKK/IκB/NF-κB, JNK, and p38 MAPK We also examined the other possibility that inactivity-induced rapid development of insulin resistance is associated with reduced phosphorylation of AS160, the most distal insulin-signaling protein that have been linked to the regulation of glucose uptake. Male Wistar rats were subjected to unilateral hindlimb immobilization for 6 h.

View Article and Find Full Text PDF

A single bout of exercise can enhance insulin-stimulated glucose uptake in both fast-twitch (type II) and slow-twitch (type I) skeletal muscle for several hours postexercise. Akt substrate of 160 kDa (AS160) is most distal insulin signaling proteins that have been proposed to contribute to the postexercise enhancement of insulin action in fast-twitch muscle. In this study, we examined whether the postexercise increase in insulin action of glucose uptake in slow-twitch muscle is accompanied by increased phosphorylation of AS160 and its paralog TBC1D1.

View Article and Find Full Text PDF

The purpose of this study was to examine whether elevation of muscle temperature per se might be a stimulatory factor to increase muscle glucose uptake. Heat stimulation to rat hindlimbs increased glucose uptake measured in vivo in the extensor digitorum longus (EDL) and soleus muscles with a significant increase in muscle temperature. This thermal effect was observed again when glucose uptake was measured in vitro in both isolated muscles immediately after the heat stimulation in vivo.

View Article and Find Full Text PDF