Publications by authors named "Emi A Lutz"

Although co-stimulation of T cells with agonist antibodies targeting 4-1BB (CD137) improves antitumor immune responses in preclinical studies, clinical success has been limited by on-target, off-tumor activity. Here, we report the development of a tumor-anchored ɑ4-1BB agonist (ɑ4-1BB-LAIR), which consists of a ɑ4-1BB antibody fused to the collagen-binding protein LAIR. While combination treatment with an antitumor antibody (TA99) shows only modest efficacy, simultaneous depletion of CD4+ T cells boosts cure rates to over 90% of mice.

View Article and Find Full Text PDF

Molecular vaccines comprising antigen peptides and inflammatory cues make up a class of therapeutics that promote immunity against cancer and pathogenic diseases but often exhibit limited efficacy. Here, we engineered an antigen peptide delivery system to enhance vaccine efficacy by targeting dendritic cells and mediating cytosolic delivery. The delivery system consists of the nontoxic anthrax protein, protective antigen (PA), and a single-chain variable fragment (scFv) that recognizes the XCR1 receptor on dendritic cells (DCs).

View Article and Find Full Text PDF

Anti-CTLA-4 antibodies have successfully elicited durable tumor regression in the clinic; however, long-term benefit is limited to a subset of patients for select cancer indications. The incomplete understanding of their mechanism of action has hindered efforts at improvement, with conflicting hypotheses proposing either antagonism of the CTLA-4:B7 axis or Fc effector-mediated regulatory T cell (Treg) depletion governing efficacy. Here, we report the engineering of a nonantagonistic CTLA-4 binding domain (b1s1e2) that depletes intratumoral Tregs as an Fc fusion.

View Article and Find Full Text PDF

Although co-stimulation of T cells with agonist antibodies targeting 4-1BB (CD137) improves antitumor immune responses in preclinical studies, clinical development has been hampered by on-target, off-tumor toxicity. Here, we report the development of a tumor-anchored ɑ4-1BB agonist (ɑ4-1BB-LAIR), which consists of an ɑ4-1BB antibody fused to the collagen binding protein LAIR. While combination treatment with an antitumor antibody (TA99) displayed only modest efficacy, simultaneous depletion of CD4 T cells boosted cure rates to over 90% of mice.

View Article and Find Full Text PDF

Confining cytokine exposure to the tumors would greatly enhance cancer immunotherapy safety and efficacy. Immunocytokines, cytokines fused to tumor-targeting antibodies, have been developed with this intention, but without significant clinical success to date. A critical limitation is uptake by receptor-expressing cells in the blood, that decreases the dose at the tumor and engenders toxicity.

View Article and Find Full Text PDF

Effective antitumor immunity in mice requires activation of the type I interferon (IFN) response pathway. IFNα and IFNβ therapies have proven promising in humans, but suffer from limited efficacy and high toxicity. Intratumoral IFN retention ameliorates systemic toxicity, but given the complexity of IFN signaling, it was unclear whether long-term intratumoral retention of type I IFNs would promote or inhibit antitumor responses.

View Article and Find Full Text PDF

Monoclonal antibodies targeting the programmed cell death protein 1 (PD-1) remain the most prevalent cancer immunotherapy both as a monotherapy and in combination with additional therapies. Despite the extensive success of anti-PD-1 monoclonal antibodies in the clinic, the experimental relationship between binding affinity and functional potency for anti-PD-1 antibodies in vivo has not been reported. Anti-PD-1 antibodies with higher and lower affinity than nivolumab or pembrolizumab are entering the clinic and show varied preclinical efficacy.

View Article and Find Full Text PDF

Anti-tumour inflammatory cytokines are highly toxic when administered systemically. Here, in multiple syngeneic mouse models, we show that the intratumoural injection of recombinantly expressed cytokines bound tightly to the common vaccine adjuvant aluminium hydroxide (alum) (via ligand exchange between hydroxyls on the surface of alum and phosphoserine residues tagged to the cytokine by an alum-binding peptide) leads to weeks-long retention of the cytokines in the tumours, with minimal side effects. Specifically, a single dose of alum-tethered interleukin-12 induced substantial interferon-γ-mediated T-cell and natural-killer-cell activities in murine melanoma tumours, increased tumour antigen accumulation in draining lymph nodes and elicited robust tumour-specific T-cell priming.

View Article and Find Full Text PDF

Direct injection of therapies into tumors has emerged as an administration route capable of achieving high local drug exposure and strong anti-tumor response. A diverse array of immune agonists ranging in size and target are under development as local immunotherapies. However, due to the relatively recent adoption of intratumoral administration, the pharmacokinetics of locally-injected biologics remains poorly defined, limiting rational design of tumor-localized immunotherapies.

View Article and Find Full Text PDF

The clinical application of cytokine therapies for cancer treatment remains limited due to severe adverse reactions and insufficient therapeutic effects. Although cytokine localization by intratumoral administration could address both issues, the rapid escape of soluble cytokines from the tumor invariably subverts this effort. We find that intratumoral administration of a cytokine fused to the collagen-binding protein lumican prolongs local retention and markedly reduces systemic exposure.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: