Publications by authors named "Emeson R"

Calcium-dependent activator protein for secretion 1 (CAPS1) is a SNARE accessory protein that facilitates formation of the SNARE complex to enable neurotransmitter release. Messenger RNAs encoding CAPS1 are subject to a site-specific adenosine-to-inosine (A-to-I) editing event resulting in a glutamate-to-glycine (E-to-G) substitution in the C-terminal domain of the encoded protein product. The C-terminal domain of CAPS1 is necessary for its synaptic enrichment and Cadps RNA editing has been shown previously to enhance the release of neuromodulatory transmitters.

View Article and Find Full Text PDF

The hydrolytic deamination of adenosine-to-inosine (A-to-I) by RNA editing is a widespread post-transcriptional modification catalyzed by the adenosine deaminase acting on RNA (ADAR) family of proteins. ADAR-mediated RNA editing modulates cellular pathways involved in innate immunity, RNA splicing, RNA interference, and protein recoding, and has been investigated as a strategy for therapeutic intervention of genetic disorders. Despite advances in basic and translational research, the mechanisms regulating RNA editing are poorly understood.

View Article and Find Full Text PDF

Photoperiod or the duration of daylight has been implicated as a risk factor in the development of mood disorders. The dopamine and serotonin systems are impacted by photoperiod and are consistently associated with affective disorders. Hence, we evaluated, at multiple stages of postnatal development, the expression of key dopaminergic (TH) and serotonergic (Tph2, SERT, and Pet-1) genes, and midbrain monoamine content in mice raised under control Equinox (LD 12:12), Short winter-like (LD 8:16), or Long summer-like (LD 16:8) photoperiods.

View Article and Find Full Text PDF

The conversion of adenosine to inosine (A to I) by RNA editing represents a common posttranscriptional mechanism for diversification of both the transcriptome and proteome, and is a part of the cellular response for innate immune tolerance. Due to its preferential base-pairing with cytosine (C), inosine (I) is recognized as guanosine (G) by reverse transcriptase, as well as the cellular splicing and translation machinery. A-to-I editing events appear as A-G discrepancies between genomic DNA and cDNA sequences.

View Article and Find Full Text PDF

Key metabolic hormones, such as insulin, leptin, and adiponectin, have been studied extensively in obesity, however the pathophysiologic relevance of the calcitonin family of peptides remains unclear. This family includes calcitonin (CT), its precursor procalcitonin (PCT), and alpha calcitonin-gene related peptide (αCGRP), which are all encoded by the gene Calca. Here, we studied the role of Calca-derived peptides in diet-induced obesity (DIO) by challenging Calcr-/- (encoding the calcitonin receptor, CTR), Calca-/-, and αCGRP-/- mice and their respective littermates with high-fat diet (HFD) feeding for 16 weeks.

View Article and Find Full Text PDF

A-to-I RNA editing is an important process for generating molecular diversity in the brain through modification of transcripts encoding several proteins important for neuronal signaling. We investigated the relationships between the extent of editing at multiple substrate transcripts (5HT2C, MGLUR4, CADPS, GLUR2, GLUR4, and GABRA3) in brain tissue obtained from adult humans and rhesus macaques. Several patterns emerged from these studies revealing conservation of editing across primate species.

View Article and Find Full Text PDF

Adenosine-to-inosine RNA editing in transcripts encoding the voltage-gated potassium channel Kv1.1 converts an isoleucine to valine codon for amino acid 400, speeding channel recovery from inactivation. Numerous Kv1.

View Article and Find Full Text PDF

The serotonin 2C receptor regulates food uptake, and its activity is regulated by alternative pre-mRNA splicing. Alternative exon skipping is predicted to generate a truncated receptor protein isoform, whose existence was confirmed with a new antiserum. The truncated receptor sequesters the full-length receptor in intracellular membranes.

View Article and Find Full Text PDF

We previously demonstrated that heterozygous deletion of Gabra1, the mouse homolog of the human absence epilepsy gene that encodes the GABAA receptor (GABAAR) α1 subunit, causes absence seizures. We showed that cortex partially compensates for this deletion by increasing the cell surface expression of residual α1 subunit and by increasing α3 subunit expression. Absence seizures also involve two thalamic nuclei: the ventrobasal (VB) nucleus, which expresses only the α1 and α4 subtypes of GABAAR α subunits, and the reticular (nRT) nucleus, which expresses only the α3 subunit subtype.

View Article and Find Full Text PDF

Transcripts encoding ADAR1, a double-stranded, RNA-specific adenosine deaminase involved in the adenosine-to-inosine (A-to-I) editing of mammalian RNAs, can be alternatively spliced to produce an interferon-inducible protein isoform (p150) that is up-regulated in both cell culture and in vivo model systems in response to pathogen or interferon stimulation. In contrast to other tissues, p150 is expressed at extremely low levels in the brain and it is unclear what role, if any, this isoform may play in the innate immune response of the central nervous system (CNS) or whether the extent of editing for RNA substrates critical for CNS function is affected by its induction. To investigate the expression of ADAR1 isoforms in response to viral infection and subsequent alterations in A-to-I editing profiles for endogenous ADAR targets, we used a neurotropic strain of reovirus to infect neonatal mice and quantify A-to-I editing in discrete brain regions using a multiplexed, high-throughput sequencing strategy.

View Article and Find Full Text PDF

The most recent work toward compiling a comprehensive database of adenosine-to-inosine RNA editing events suggests that the potential for RNA editing is much more pervasive than previously thought; indeed, it is manifest in more than 100 million potential editing events located primarily within Alu repeat elements of the human transcriptome. Pairs of inverted Alu repeats are found in a substantial number of human genes, and when transcribed, they form long double-stranded RNA structures that serve as optimal substrates for RNA editing enzymes. A small subset of edited Alu elements has been shown to exhibit diverse functional roles in the regulation of alternative splicing, miRNA repression, and cis-regulation of distant RNA editing sites.

View Article and Find Full Text PDF

Relapse vulnerability in cocaine dependence is rooted in genetic and environmental determinants, and propelled by both impulsivity and the responsivity to cocaine-linked cues ('cue reactivity'). The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2C receptor (5-HT2CR) within the medial prefrontal cortex (mPFC) is uniquely poised to serve as a strategic nexus to mechanistically control these behaviors. The 5-HT2CR functional capacity is regulated by a number of factors including availability of active membrane receptor pools, the composition of the 5-HT2CR macromolecular protein complex, and editing of the 5-HT2CR pre-mRNA.

View Article and Find Full Text PDF

Initially identified as an RNA modification in the anticodon loop of tRNAs from animal, plant and eubacterial origin, the deamination of adenosine-to-inosine by RNA editing has become increasingly recognized as an important RNA processing event to generate diversity in both the transcriptome and proteome and is essential for modulating the activity of numerous proteins critical for nervous system function. Here, we focus on the editing of transcripts encoding the 2C-subtype of serotonin receptor (5HT(2C)) to generate multiple receptor isoforms that differ in G-protein coupling efficacy and constitutive activity. 5HT(2C) receptors have been implicated in the regulation of anxiety, components of the stress response, and are thought to play a role in compulsive behavioral disorders, depression and drug addiction.

View Article and Find Full Text PDF

The central dogma of molecular biology defines the major route for the transfer of genetic information from genomic DNA to messenger RNA to three-dimensional proteins that affect structure and function. Like alternative splicing, the post-transcriptional conversion of adenosine to inosine (A-to-I) by RNA editing can dramatically expand the diversity of the transcriptome to generate multiple, functionally distinct protein isoforms from a single genomic locus. While RNA editing has been identified in virtually all tissues, such post-transcriptional modifications have been best characterized in RNAs encoding both ligand- and voltage-gated ion channels and neurotransmitter receptors.

View Article and Find Full Text PDF

Sequence-dependent recognition of dsDNA-binding proteins is well understood, yet sequence-specific recognition of dsRNA by proteins remains largely unknown, despite their importance in RNA maturation pathways. Adenosine deaminases that act on RNA (ADARs) recode genomic information by the site-selective deamination of adenosine. Here, we report the solution structure of the ADAR2 double-stranded RNA-binding motifs (dsRBMs) bound to a stem-loop pre-mRNA encoding the R/G editing site of GluR-2.

View Article and Find Full Text PDF

Transcripts encoding 5-HT(2C) receptors are modified posttranscriptionally by RNA editing, generating up to 24 protein isoforms. In recombinant cells, the fully edited isoform, 5-HT(2C-VGV), exhibits blunted G-protein coupling and reduced constitutive activity. The present studies examine the signal transduction properties of 5-HT(2C-VGV) receptors in brain to determine the in vivo consequences of altered editing.

View Article and Find Full Text PDF

RNA transcripts encoding the 2C-subtype of serotonin (5HT(2C)) receptor undergo up to five adenosine-to-inosine editing events to encode twenty-four protein isoforms. To examine the effects of altered 5HT(2C) editing in vivo, we generated mutant mice solely expressing the fully-edited (VGV) isoform of the receptor. Mutant animals present phenotypic characteristics of Prader-Willi syndrome (PWS) including a failure to thrive, decreased somatic growth, neonatal muscular hypotonia, and reduced food consumption followed by post-weaning hyperphagia.

View Article and Find Full Text PDF

RNA editing is a post-transcriptional modification in which adenosine residues are converted to inosine (adenosine-to-inosine editing). Commonly used methodologies to quantify RNA editing levels involve either direct sequencing or pyrosequencing of individual cDNA clones. The limitations of these methods lead to a small number of clones characterized in comparison to the number of mRNA molecules in the original sample, thereby producing significant sampling errors and potentially erroneous conclusions.

View Article and Find Full Text PDF

The serotonin 2C receptor (5-HT(2C)R) plays a significant role in psychiatric disorders (e.g., depression) and is a target for pharmacotherapy.

View Article and Find Full Text PDF

The conversion of adenosine to inosine within RNA transcripts is regulated by a family of double-stranded RNA-specific adenosine deaminases referred to as adenosine deaminases that act on RNA (ADARs). Little is known regarding the developmental expression of ADAR family members or the mechanisms responsible for the specific patterns of editing observed for ADAR substrates. We have examined the spatiotemporal expression patterns for ADAR1 and ADAR2 in mouse forebrain.

View Article and Find Full Text PDF

Adenosine-to-inosine (A-to-I) editing of RNA transcripts is an increasingly recognized cellular strategy to modulate the function of proteins involved in neuronal excitability. We have characterized the editing of transcripts encoding the alpha3 subunit of heteromeric GABA(A) receptors (Gabra3), in which a genomically encoded isoleucine codon (ATA) is converted to a methionine codon (ATI) in a region encoding the predicted third transmembrane domain of this subunit. Editing at this position (I/M site) was regulated in a spatiotemporal manner with approximately 90% of the Gabra3 transcripts edited in most regions of adult mouse brain, but with lower levels of editing in the hippocampus.

View Article and Find Full Text PDF

The Calca gene encodes two polypeptides, calcitonin (CT) and alpha-calcitonin gene-related peptide (alpha-CGRP), generated through alternative splicing. While CT, a hormone mainly produced by thyroidal C cells, has been described as a major regulator of bone resorption, alpha-CGRP, a neuropeptide expressed in the cells of the central and peripheral nervous system, is mostly known as a regulator of vascular tone. Surprisingly, the generation and skeletal analyses of two mouse deficiency models has recently uncovered a physiological function for both peptides in the regulation of bone formation.

View Article and Find Full Text PDF

The conversion of adenosine to inosine (A-to-I) by RNA editing is a widespread RNA processing event by which genomically encoded sequences are altered through site-specific deamination of adenosine residue(s) in RNA transcripts through the actions of a family of double-stranded RNA-specific adenosine deaminases (ADARs). While significant advances have been made regarding the functional consequences of A-to-I editing using heterologous expression systems, the physiological relevance of such RNA modifications in mammals has been addressed effectively using gene-targeting strategies in mice via homologous recombination in embryonic stem (ES) cells. These gene-targeting approaches have allowed the generation of mutant mouse strains in which site-specific editing events can be fixed in the fully edited or nonedited state for individual ADAR targets, expression of ADAR proteins can be selectively ablated, or a combination of ADAR elimination and ADAR target modification can be used for a more in-depth understanding of the biological consequences of A-to-I editing dysregulation.

View Article and Find Full Text PDF