Polymeric microparticles are promising biomaterial platforms for targeting macrophages in the treatment of disease. This study investigates microparticles formed by a thiol-Michael addition step-growth polymerization reaction with tunable physiochemical properties and their uptake by macrophages. The hexafunctional thiol monomer dipentaerythritol hexa-3-mercaptopropionate (DPHMP) and tetrafunctional acrylate monomer di(trimethylolpropane) tetraacrylate (DTPTA) were reacted in a stepwise dispersion polymerization, achieving tunable monodisperse particles over a size range (1-10 μm) relevant for targeting macrophages.
View Article and Find Full Text PDFMicroparticle-mediated nucleic acid delivery is a popular strategy to achieve therapeutic outcomes via antisense gene therapy. However, current methods used to fabricate polymeric microparticles suffer from suboptimal properties such as particle polydispersity and low encapsulation efficiency. Here, a new particulate delivery system based on step-growth thiol-Michael dispersion polymerization is reported in which a low polydispersity microparticle is functionalized with a synthetic nucleic acid mimic, namely, click nucleic acids (CNA).
View Article and Find Full Text PDFReactive oxygen species (ROS) represent a broad range of chemical species including superoxide, hydroxyl, singlet oxygen, and hydrogen peroxide. Each species behaves differently in the cellular environment. Some can play specific roles as intracellular signaling molecules, while others act primarily as indiscriminate oxidants.
View Article and Find Full Text PDF