Publications by authors named "Emerson Bernardes"

Article Synopsis
  • * The study developed a method for radiolabeling anthocyanins and nanoencapsulating them using citrus pectin and lysozyme, resulting in structures that are 190 nm in size and have a consistent spherical shape.
  • * Findings showed that nanoencapsulated anthocyanins are absorbed more effectively than free anthocyanins in mice, with improved delivery to various organs, which may enhance their biological effects and potential medical applications.
View Article and Find Full Text PDF

Background: Acquired resistance and adverse effects are some of the challenges faced by thousands of Luminal A breast cancer patients under tamoxifen (TMX) treatment. Some authors associate the overexpression of HOXB7 with TMX resistance in this molecular subtype, and the knockdown of this gene could be an effective strategy to regain TMX sensitivity. Therefore, we used calcium phosphate hybrid nanoparticles (HNP) for the delivery of short interfering RNA molecule (siRNA) complementary to the HOXB7 gene and evaluated the RNA interference (RNAi) effects associated with TMX treatment in breast cancer in vivo.

View Article and Find Full Text PDF

Background: The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biannual highlight commentary to update the readership on trends in the field of radiopharmaceutical development.

Main Body: This selection of highlights provides commentary on 19 different topics selected by each coauthoring Editorial Board member addressing a variety of aspects ranging from novel radiochemistry to first-in-human application of novel radiopharmaceuticals.

Conclusion: Trends in radiochemistry and radiopharmacy are highlighted.

View Article and Find Full Text PDF

GH acts in numerous organs expressing the GH receptor (GHR), including the brain. However, the mechanisms behind the brain's permeability to GH and how this hormone accesses different brain regions remain unclear. It is well-known that an acute GH administration induces phosphorylation of the signal transducer and activator of transcription 5 (pSTAT5) in the mouse brain.

View Article and Find Full Text PDF

Fourier-transform infrared spectroscopy (FTIR) is a powerful, non-destructive, highly sensitive and a promising analytical technique to provide spectrochemical signatures of biological samples, where markers like carbohydrates, proteins, and phosphate groups of DNA can be recognized in biological micro-environment. However, method of measurements of large cells need an excessive time to achieve high quality images, making its clinical use difficult due to speed of data-acquisition and lack of optimized computational procedures. To address such challenges, Machine Learning (ML) based technologies can assist to assess an accurate prognostication of breast cancer (BC) subtypes with high performance.

View Article and Find Full Text PDF

Nanotechnology has revolutionized medicine, especially in oncological treatments. Gold nanoparticles (AuNPs) stand out as an innovative alternative due to their biocompatibility, potential for surface modification, and effectiveness in radiotherapeutic techniques. Given that prostate cancer ranks as one of the leading malignancies among men, there's a pressing need to investigate new therapeutic approaches.

View Article and Find Full Text PDF

Background: Tumour hypoxia is associated with increased metastasis, invasion, poor therapy response and prognosis. Most PET radiotracers developed and used for clinical hypoxia imaging belong to the 2-nitroimidazole family. Recently we have developed novel 2-nitroimidazole-derived PET radiotracer [F]FBNA (N-(4-[F]fluoro-benzyl)-2-(2-nitro-1H-imidazol-1-yl)-acet-amide), an F-labeled analogue of antiparasitic drug benznidazole.

View Article and Find Full Text PDF

Plant-derived polyphenols are naturally occurring compounds widely distributed in plants. They have received greater attention in the food and pharmaceutical industries due to their potential health benefits, reducing the risk of some chronic diseases due to their antioxidant, anti-inflammatory, anticancer, cardioprotective, and neuro-action properties. Polyphenolic compounds orally administered can be used as adjuvants in several treatments but with restricted uses due to chemical instability.

View Article and Find Full Text PDF

Breast cancer (BC) molecular subtypes diagnosis involves improving clinical uptake by Fourier transform infrared (FTIR) spectroscopic imaging, which is a non-destructive and powerful technique, enabling label free extraction of biochemical information towards prognostic stratification and evaluation of cell functionality. However, methods of measurements of samples demand a long time to achieve high quality images, making its clinical use impractical because of the data acquisition speed, poor signal to noise ratio, and deficiency of optimized computational framework procedures. To address those challenges, machine learning (ML) tools can facilitate obtaining an accurate classification of BC subtypes with high actionability and accuracy.

View Article and Find Full Text PDF

Notch signaling pathway plays a crucial role in cellular fate across species, being important for the differentiation and development of several cell types. The aim of this study was to evaluate the effect of Notch inhibition pathway by dibenzazepine (DBZ) in histological and inflammatory alterations and, tissue parasitism in acute Toxoplasma gondii infection. For this, C57BL/6 mice were treated with DBZ before infection with T.

View Article and Find Full Text PDF

Background: 2-[F]Fluoroethyltosylate ([F]FEtOTs) is a well-known F-fluoroalkylating agent widely used to synthesize radiotracers for positron emission tomography. The widespread use of [F]FEtOTs is due in part to its low volatility when compared to other halide and sulfonate building blocks. In this work, the radioactive volatile side-products formed during the synthesis of [F]FEtOTs were identified and characterized for the first time, and an optimization of the reaction conditions to minimize their formation was proposed.

View Article and Find Full Text PDF

Lycopene is a hydrocarbon-carotenoid commonly found in red fruits intake with major function correlated to antioxidative capacity in several pathological conditions, including cancer and cardiovascular diseases. Recently, lycopene has been associated with hematopoiesis, although the effects on B lymphocyte differentiation and antibody production are poorly understood. In this work, the principal aim was to investigate whether lycopene affects B lymphopoiesis and terminal differentiation into plasma cells.

View Article and Find Full Text PDF

Background: The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biannual highlight commentary to update the readership on trends in the field of radiopharmaceutical development.

Main Body: This commentary of highlights has resulted in 21 different topics selected by each coauthoring Editorial Board member addressing a variety of aspects ranging from novel radiochemistry to first in man application of novel radiopharmaceuticals.

Conclusion: Trends in radiochemistry and radiopharmacy are highlighted demonstrating the progress in the research field in various topics including new PET-labelling methods, FAPI-tracers and imaging, and radionuclide therapy being the scope of EJNMMI Radiopharmacy and Chemistry.

View Article and Find Full Text PDF

Background: Tissue hypoxia is a pathological condition characterized by reducing oxygen supply. Hypoxia is a hallmark of tumor environment and is commonly observed in many solid tumors. Non-invasive imaging techniques like positron emission tomography (PET) are at the forefront of detecting and monitoring tissue hypoxia changes in vivo.

View Article and Find Full Text PDF

Background: The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biyearly highlight commentary to update the readership on trends in the field of radiopharmaceutical development.

Results: This commentary of highlights has resulted in 23 different topics selected by each member of the Editorial Board addressing a variety of aspects ranging from novel radiochemistry to first in man application of novel radiopharmaceuticals and also a contribution in relation to MRI-agents is included.

Conclusion: Trends in (radio)chemistry and radiopharmacy are highlighted demonstrating the progress in the research field being the scope of EJNMMI Radiopharmacy and Chemistry.

View Article and Find Full Text PDF

Molecular imaging (MI) is a non-invasive growing technology that allows the investigation of cellular and molecular processes in basic and clinical research and medicine. Luminescent proteins and radionuclides can be associated to target molecules providing high-definition and real-time image of whole body in few minutes or hours. Several MI studies have enabled the determination of molecular partners, in vivo tracking, and fate of compounds in different disorders.

View Article and Find Full Text PDF

ERK1/2 inhibitors have attracted special attention concerning the ability of circumventing cases of innate or log-term acquired resistance to RAF and MEK kinase inhibitors. Based on the 4-aminoquinazoline pharmacophore of kinases, herein we describe the synthesis of 4-aminoquinazoline derivatives bearing a 1,2,3-triazole stable core to bridge different aromatic and heterocyclic rings using copper-catalysed azide-alkyne cycloaddition reaction (CuAAC) as a Click Chemistry strategy. The initial screening of twelve derivatives in tumoral cells (CAL-27, HN13, HGC-27, and BT-20) revealed that the most active in BT-20 cells (25a, IC 24.

View Article and Find Full Text PDF

Background: There is a steady rise in the global incidence of Aedes-borne arbovirus disease. It has become urgent to develop alternative solutions for mosquito vector control. We developed a new method of sterilization of male mosquitoes with the goal to suppress a local Aedes aegypti population and to prevent the spread of dengue.

View Article and Find Full Text PDF

Introduction: Radiosynovectomy (RS) with Y-hydroxyapatite (Y-HyA) aims to control knee hemarthrosis in hemophiliac patients to prevent secondary arthropathy. However, knee RS using Sm-hydroxyapatite (Sm-HyA) is considered less suitable due to the lower average soft tissue range and energy of Sm for large joints, such as the knees.

Purpose: The objective of this investigation was to assess the efficacy and safety of knee RS with Sm-HyA, compared to Y-HyA.

View Article and Find Full Text PDF

Galectins are differentially expressed in a variety of cell types, including immune cells, and characterized by the affinity for β-galactoside-containing glycans. There are fifteen galectin members in mammals. Galectins are primarily located intracellularly, but can be secreted outside the cells.

View Article and Find Full Text PDF

Galectin-3 (Gal-3) is a multifunctional -galactoside-binding lectin that once synthesized is expressed in the nucleus, cytoplasm, cell surface, and extracellular environment. Gal-3 plays an important role in breast cancer tumors due to its ability to promote interactions between cell-cell and cell-extracellular matrix (ECM) elements, increasing tumor survival and metastatic dissemination. Still, the mechanism by which Gal-3 interferes with tumor cell migration and metastasis formation is complex and not fully understood.

View Article and Find Full Text PDF

Galectin-3 (Gal-3) is a multifunctional glycan-binding protein that participates in many pathophysiological events and has been described as a biomarker and potential therapeutic target for severe disorders, such as cancer. Several probes for Gal-3 or its ligands have been developed, however both the pathophysiological mechanisms and potential biomedical applications of Gal-3 remain not fully assessed. Molecular imaging using bioluminescent probes provides great sensitivity for in vivo and in vitro analysis for both cellular and whole multicellular organism tracking and target detection.

View Article and Find Full Text PDF

Background: Adenocarcinoma of colon and rectum are one of the most common cancers worldwide, responsible for over 1,300,000 people diagnosed. Also, they are responsible for metastasis, which leads to death in less than 5 years.

Methods: In this study, we developed, characterized, and pre-clinically tested a new nano-radiopharmaceutical for early and differential detection of adenocarcinoma of colon and rectum.

View Article and Find Full Text PDF

Purpose: Pancreatic Polypeptide-secreting tumor of the distal pancreas (PPoma) is a rare, difficult and indolent type of cancer with a survival rate of 5-year in only 10% of all cases. The PPoma is classified as a neuroendocrine tumor (NET) not functioning that overexpresses SSTR 2 (somatostatin receptor subtype 2). Thus, in order to improve the diagnosis of this type of tumor, we developed nanoparticulate drug carriers based on poly-lactic acid (PLA) polymer loaded with octreotide and radiolabeled with Technetium-99 m (Tc).

View Article and Find Full Text PDF

Breast cancer is women's most common type of cancer, with a global rate of over 522,000 deaths per year. One of the main problems related to breast cancer relies in the early detection, as the specialized treatment. In this direction was developed, characterized and tested in vivo a smart delivery system, based on radiolabelled magnetic core mesoporous silica doped with trastuzumab as intralesional nanodrug for breast cancer imaging and possible therapy.

View Article and Find Full Text PDF