Publications by authors named "Emelyne Dengler"

Xenopus laevis and other frogs are extremely insensitive to the toxicity of xenobiotic ligands of the aryl hydrocarbon receptor (AHR), including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Premetamorphic life stages are especially insensitive, and they are reported to be refractory to induction of Cytochrome P4501As, which are readily induced in older animals. The AHR repressor (AHRR) is a member of the AHR gene family.

View Article and Find Full Text PDF

Biological molecules and intracellular structures operate at the nanoscale; therefore, development of nanomedicines shows great promise for the treatment of disease by using targeted drug delivery and gene therapies. PAMAM dendrimers, which are highly branched polymers with low polydispersity and high functionality, provide an ideal architecture for construction of effective drug carriers, gene transfer devices and imaging of biological systems. For example, dendrimers bioconjugated with selective ligands such as Arg-Gly-Asp (RGD) would theoretically target cells that contain integrin receptors and show potential for use as drug delivery devices.

View Article and Find Full Text PDF

The Hedgehog (Hh) signaling pathway plays an integral role in the patterning and development of diverse structures in the vertebrate embryo. Aberrations in Hh signaling are associated with a range of developmental defects including failure of interhemispheric division of the embryonic forebrain as well as midline facial dysmorphia including cleft lip/palate and cyclopia, collectively termed holoprosencephaly (HPE). Postnatally, Hh signaling has been postulated to play a pivotal role in healing and repair processes and inappropriate Hh pathway activation has been implicated in several types of cancers.

View Article and Find Full Text PDF

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent developmental toxicant in most vertebrates. However, frogs are relatively insensitive to TCDD toxicity, especially during early life stages. Toxicity of TCDD and related halogenated aromatic hydrocarbons is mediated by the aryl hydrocarbon receptor (AhR), and specific differences in properties of the AhR signaling pathway can underlie in TCDD toxicity in different species.

View Article and Find Full Text PDF