Chronic, systemic inflammation is a pathophysiological manifestation of metabolic disorders. Inflammatory signaling leads to elevated glycolytic flux and a metabolic shift towards aerobic glycolysis and lactate generation. This rise in lactate corresponds with increased generation of lactoylLys modifications on histones, mediating transcriptional responses to inflammatory stimuli.
View Article and Find Full Text PDFChronic, systemic inflammation is a pathophysiological manifestation of metabolic disorders. Inflammatory signaling leads to elevated glycolytic flux and a metabolic shift towards aerobic glycolysis and lactate generation. This rise in lactate corresponds with increased generation of lactoylLys modifications on histones, mediating transcriptional responses to inflammatory stimuli.
View Article and Find Full Text PDFThe immediate precursor to murine type 1 conventional DCs (cDC1s) has recently been established and named "pre-cDC1s". Mature CD8α+ cDC1s are recognized for suppressing graft-versus-host disease (GvHD) while promoting graft-versus-leukemia (GvL), however pre-cDC1s have not previously been investigated in the context of alloreactivity or anti-tumor responses. Characterization of pre-cDC1s, compared to CD8α+ cDC1s, found that a lower percentage of pre-cDC1s express PD-L1, yet express greater PD-L1 by MFI and a greater percent PIR-B, a GvHD-suppressing molecule.
View Article and Find Full Text PDFThe growth factor Flt3 ligand (Flt3L) is central to dendritic cell (DC) homeostasis and development, controlling survival and expansion by binding to Flt3 receptor tyrosine kinase on the surface of DCs. In the context of hematopoietic cell transplantation, Flt3L has been found to suppress graft-versus-host disease (GvHD), specifically host DCs. We previously reported that the pre-transplant conditioning regimen consisting of bendamustine (BEN) and total body irradiation (TBI) results in significantly reduced GvHD compared to cyclophosphamide (CY)+TBI.
View Article and Find Full Text PDFBendamustine (BEN) is a unique alkylating agent with efficacy against a broad range of hematological malignancies, although investigations have only recently started to delve into its immunomodulatory effects. These immunomodulatory properties of BEN in the context of hematopoietic cell transplantation (HCT) are reviewed here. Pre- and post-transplant use of BEN in multiple murine models have consistently resulted in reduced GvHD and enhanced GvL, with significant changes to key immunological cell populations, including T-cells, myeloid derived suppressor cells (MDSCs), and dendritic cells (DCs).
View Article and Find Full Text PDFGraft-versus-host disease (GvHD) remains the second leading cause of death in allogeneic hematopoietic stem cell transplantation recipients, highlighting the need for improved preventative strategies. Our laboratory has previously demonstrated in an experimental bone marrow transplantation (BMT) model that bendamustine combined with total body irradiation (BEN+TBI) is a safer alternative to cyclophosphamide with TBI (CY+TBI). The biological mechanisms of action of BEN have not been fully elucidated and likely involve multiple cell populations.
View Article and Find Full Text PDFGraft-versus-host disease (GvHD) remains a significant impediment to allogeneic hematopoietic cell transplantation (HCT) success, necessitating studies focused on alleviating GvHD, while preserving the graft-versus-leukemia (GvL) effect. Based on our previous studies showing bendamustine with total body irradiation (BEN-TBI) conditioning reduces GvHD compared to the current clinical standard of care cyclophosphamide (CY)-TBI in a murine MHC-mismatched bone marrow transplantation (BMT) model, this study aimed to evaluate the role and fate of donor T-cells following BEN-TBI conditioning. We demonstrate that BEN-TBI reduces GvHD compared to CY-TBI independently of T regulatory cells (Tregs).
View Article and Find Full Text PDFGraft-versus-host disease (GVHD) remains a significant challenge in allogeneic hematopoietic cell transplantation (HCT). An underinvestigated strategy to reduce GVHD is the modification of the preparative conditioning regimen. In the present study, we aimed to evaluate GVHD associated with bendamustine (BEN) conditioning in conjunction with total body irradiation (TBI) as an alternative to the standard myeloablative regimen of cyclophosphamide (CY) and TBI.
View Article and Find Full Text PDFMultiple adult female CB6F1 mice presented with supernumerary incisors after preconditioning with chemotherapy and total body irradiation for bone marrow transplantation (BMT). Mice received nonmyeloablative total body irradiation (3 Gy) and either cyclophosphamide or bendamustine, followed by BMT and posttransplantation cyclophosphamide or bendamustine. Here we describe the clinical presentation, μCT findings, and histopathologic evaluation of the affected mice.
View Article and Find Full Text PDFMyeloid-derived suppressor cells (MDSCs) are CD11bGr1 cells that induce T-cell hyporesponsiveness, thus impairing antitumor immunity. We have previously reported that disruption of Pak2, a member of the p21-activated kinases (Paks), in hematopoietic stem/progenitor cells (HSPCs) induces myeloid lineage skewing and expansion of CD11bGr1 cells in mice. In this study, we confirmed that CD11bGr1 cells suppressed T-cell proliferation, consistent with an MDSC phenotype.
View Article and Find Full Text PDFAdvances in haploidentical bone marrow transplantation (h-BMT) have drastically broadened the treatment options for patients requiring BMT. The possibility of significantly reducing the complications resulting from graft-versus-host disease (GvHD) with the administration of post-transplant cyclophosphamide (PT-CY) has substantially improved the efficacy and applicability of T cell-replete h-BMT. However, higher frequency of disease recurrence remains a major challenge in h-BMT with PT-CY.
View Article and Find Full Text PDFPurpose: Glucocorticoid (GC)-induced glaucoma is an undesirable side effect of traditional GCs. Ocular hypertension responsible for GC-induced glaucoma is due to alterations in conventional outflow homeostasis. The present study evaluates a novel selective GC receptor agonist (SEGRA), GW870086X, in two different in vitro models of the human conventional outflow pathway.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
March 2009
Purpose: The goal of the present study was to determine whether the release of exosomes containing MYOC from trabecular meshwork (TM) cells is constitutive or regulated.
Methods: Conditioned media from TM cells were analyzed for MYOC-associated exosomes after treatment with IFN-gamma, porcine aqueous humor, dexamethasone, or a calcium ionophore in cells pretreated with dexamethasone. Aqueous humor was tested whole or fractionated by size exclusion filters.
Purpose: A critical function of trabecular meshwork cells is to degrade cellular debris, including DNA. We hypothesize that low transfection efficiencies of primary human trabecular meshwork (HTM) cell cultures with plasmid DNA are a function of retained capacity to efficiently degrade exogenous DNA in vitro.
Methods: To determine mechanisms responsible for low transfection efficiencies of cultured HTM cells, steps of DNA entry into cytoplasm and nucleus were characterized.
Myocilin (MYOC) is a protein with a broad expression pattern, but unknown function. MYOC associates with intracellular structures that are consistent with secretory vesicles, however, in most cell types studied, MYOC is limited to the intracellular compartment. In the trabecular meshwork, MYOC associates with intracellular vesicles, but is also found in the extracellular space.
View Article and Find Full Text PDF