Publications by authors named "Emel Sen-Kilic"

The incidence of infections attributed to antimicrobial-resistant (AMR) pathogens has increased exponentially over the recent decades reaching 1.27 million deaths worldwide in 2019. Without intervention, these infections are predicted to cause up to 10 million deaths a year and incur costs of up to 100 trillion US dollars globally by 2050.

View Article and Find Full Text PDF

Lyme disease, caused by the bacterium Borrelia burgdorferi, is the most common tick-borne illness in the United States. Despite the rise in Lyme disease incidence, there is no vaccine against B. burgdorferi approved for human use.

View Article and Find Full Text PDF

Acellular multivalent vaccines for pertussis (DTaP and Tdap) prevent symptomatic disease and infant mortality, but immunity to Bordetella pertussis infection wanes significantly over time resulting in cyclic epidemics of pertussis. The messenger RNA (mRNA) vaccine platform provides an opportunity to address complex bacterial infections with an adaptable approach providing Th1-biased responses. In this study, immunogenicity and challenge models were used to evaluate the mRNA platform with multivalent vaccine formulations targeting both B.

View Article and Find Full Text PDF

Unlabelled: Gastric cancer is the fifth most diagnosed cancer in the world. Infection by the bacteria (HP) is associated with approximately 75% of gastric cancer cases. HP infection induces chronic gastric inflammation, damaging the stomach and fostering carcinogenesis.

View Article and Find Full Text PDF

Background: Gastric cancer is the fifth most diagnosed cancer in the world. Infection by the bacteria (HP) is associated with approximately 75% of gastric cancer cases. HP infection induces chronic gastric inflammation, damaging the stomach and fostering carcinogenesis.

View Article and Find Full Text PDF

The murine Bordetella pertussis challenge model has been utilized in preclinical research for decades. Currently, inconsistent methodologies are employed by researchers across the globe, making it difficult to compare findings. The objective of this work was to utilize the CD-1 mouse model with two routes of challenge, intranasal and aerosol administration of B.

View Article and Find Full Text PDF

is a common cause of hospital-acquired infections, including central line-associated bloodstream infections and ventilator-associated pneumonia. Unfortunately, effective control of these infections can be difficult, in part due to the prevalence of multi-drug resistant strains of . There remains a need for novel therapeutic interventions against , and the use of monoclonal antibodies (mAb) is a promising alternative strategy to current standard of care treatments such as antibiotics.

View Article and Find Full Text PDF

Haemophilus influenzae is a human-adapted bacterial pathogen that causes airway infections. Bacterial and host elements associated with the fitness of H. influenzae within the host lung are not well understood.

View Article and Find Full Text PDF

The rise of antimicrobial-resistant bacterial infections is a crucial health concern in the 21st century. In particular, antibiotic-resistant causes difficult-to-treat infections associated with high morbidity and mortality. Unfortunately, the number of effective therapeutic interventions against antimicrobial-resistant infections continues to decline.

View Article and Find Full Text PDF

Whole cell vaccines are complex mixtures of antigens, immunogens, and sometimes adjuvants that can trigger potent and protective immune responses. In some instances, such as whole cell Bordetella pertussis vaccination, the immune response to vaccination extends beyond the pathogen the vaccine was intended for and contributes to protection against other clinically significant pathogens. In this study, we describe how B.

View Article and Find Full Text PDF

Emergence of variants of concern (VOC) during the COVID-19 pandemic has contributed to the decreased efficacy of therapeutic monoclonal antibody treatments for severe cases of SARS-CoV-2 infection. In addition, the cost of creating these therapeutic treatments is high, making their implementation in low- to middle-income countries devastated by the pandemic very difficult. Here, we explored the use of polyclonal EpF(ab') antibodies generated through the immunization of horses with SARS-CoV-2 WA-1 RBD conjugated to HBsAg nanoparticles as a low-cost therapeutic treatment for severe cases of disease.

View Article and Find Full Text PDF

Bordetella pertussis is the causative agent of whooping cough (pertussis), a severe respiratory disease that can be fatal, particularly in infants. Despite high vaccine coverage, pertussis remains a problem because the currently used DTaP and Tdap vaccines do not completely prevent infection or transmission. It is well established that the alum adjuvant is a potential weakness of the acellular vaccines because the immunity provided by it is short-term.

View Article and Find Full Text PDF

Background: Lung airway epithelial cells are part of innate immunity and the frontline of defense against bacterial infections. During infection, airway epithelial cells secrete proinflammatory mediators that participate in the recruitment of immune cells. Virulence factors expressed by bacterial pathogens can alter epithelial cell gene expression and modulate this response.

View Article and Find Full Text PDF

SARS-CoV-2 is a viral respiratory pathogen responsible for the current global pandemic and the disease that causes COVID-19. All current WHO approved COVID-19 vaccines are administered through the muscular route. We have developed a prototype two-dose vaccine (BReC-CoV-2) by combining the Receptor Binding Domain (RBD) antigen, via conjugation to Diphtheria toxoid (EcoCRM).

View Article and Find Full Text PDF

Over two decades ago acellular pertussis vaccines (aP) replaced whole cell pertussis vaccines (wP) in several countries. Since then, a resurgence in pertussis has been observed, which is hypothesized to be linked, in part, to waning immunity. To better understand why waning immunity occurs, we developed a long-term outbred CD1 mouse model to conduct the longest murine pertussis vaccine studies to date, spanning out to 532 days post primary immunization.

View Article and Find Full Text PDF

Bordetella pertussis is a highly contagious bacterium that is the causative agent of whooping cough (pertussis). Currently, acellular pertussis vaccines (aP, DTaP, and Tdap) are used to prevent pertussis disease. However, it is clear that the aP vaccine efficacy quickly wanes, resulting in the reemergence of pertussis.

View Article and Find Full Text PDF

colonizes the respiratory mucosa of humans, inducing an immune response seeded in the respiratory tract. An individual, once convalescent, exhibits long-term immunity to the pathogen. Current acellular pertussis (aP) vaccines do not induce the long-term immune response observed after natural infection in humans.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers explored the effectiveness of a curdlan-adjuvanted whole-cell vaccine (WCV) delivered intranasally, finding that it significantly reduced bacterial loads and increased specific antibody levels post-vaccination.
  • * Results indicated that while T cells play a role, the protection against the pathogen mainly relies on antibodies, as depletion of B cells hindered bacterial clearance despite T cell presence, suggesting T cell-independent antibody production is sufficient for vaccine efficacy.
View Article and Find Full Text PDF

Whole cell vaccines are frequently the first generation of vaccines tested for pathogens and can inform the design of subsequent acellular or subunit vaccines. For respiratory pathogens, administration of vaccines at the mucosal surface can facilitate the generation of a localized mucosal immune response. Here, we examined the innate and vaccine-induced immune responses to infection by two respiratory pathogens: and .

View Article and Find Full Text PDF

is an opportunistic pathogen causing acute and chronic respiratory infections associated with morbidity and mortality, especially in patients with cystic fibrosis. Vaccination against before colonization may be a solution against these infections and improve the quality of life of at-risk patients. To develop a vaccine against , we formulated a novel peptide-based subunit vaccine based on the extracellular regions of one of its major siderophore receptors, FpvA.

View Article and Find Full Text PDF

Current acellular pertussis vaccines fall short of optimal protection against the human respiratory pathogen resulting in increased incidence of a previously controlled vaccine- preventable disease. Natural infection is known to induce a protective mucosal immunity. Therefore, in this study, we aimed to use acellular pertussis vaccines to recapitulate these mucosal immune responses.

View Article and Find Full Text PDF

Hematopoietic stem and progenitor cell (HSPC) compartments are altered to direct immune responses to infection. Their roles during immunization are not well-described. To elucidate mechanisms for waning immunity following immunization with acellular vaccines (ACVs) against (), we tested the hypothesis that immunization with ACVs and whole cell vaccines (WCVs) differ in directing the HSPC characteristics and immune cell development patterns that ultimately contribute to the types and quantities of cells produced to fight infection.

View Article and Find Full Text PDF

The Carpathian Basin is a lowland plain located mainly in Hungary. Due to the nature of the bedrock, alluvial deposits, and a bowl shape, many lakes and ponds of the area are characterized by high alkalinity. In this study, we characterized temporal changes in eukaryal and bacterial community dynamics with high throughput sequencing and relate the changes to environmental conditions in Lake Velence located in Fejér county, Hungary.

View Article and Find Full Text PDF

is the primary causative agent of pertussis (whooping cough), which is a respiratory infection that leads to a violent cough and can be fatal in infants. There is a need to develop more effective vaccines because of the resurgence of cases of pertussis in the United States since the switch from the whole-cell pertussis vaccines (wP) to the acellular pertussis vaccines (aP; diphtheria-tetanus-acellular-pertussis vaccine/tetanus-diphtheria-pertussis vaccine). Adenylate cyclase toxin (ACT) is a major virulence factor of that is (i) required for establishment of infection, (ii) an effective immunogen, and (iii) a protective antigen.

View Article and Find Full Text PDF