Publications by authors named "Emel Basak Gencer"

The dysregulated tyrosine kinase BCR-ABL causes chronic myelogenous leukemia in humans and forms a large multiprotein complex that includes the Src-homology 2 (SH2) domain-containing phosphatase 2 (SHP2). The expression of SHP2 is necessary for BCR-ABL-dependent oncogenic transformation, but the precise signaling mechanisms of SHP2 are not well understood. We have developed binding proteins, termed monobodies, for the N- and C-terminal SH2 domains of SHP2.

View Article and Find Full Text PDF

In this article, we are reviewing the molecular mechanisms that lead to kinase inhibitor resistance. As the oncogenic BCR-ABL kinase is the target of the first approved small-molecule kinase inhibitor imatinib, we will first focus on the structural and mechanistic basis for imatinib resistance. We will then show ways how next generations of BCR-ABL inhibitors and alternative targeting strategies have helped to offer effective treatment options for imatinib-resistant patients.

View Article and Find Full Text PDF

Multidrug resistance remains a significant obstacle to successful chemotherapy. The ability to determine the possible resistance mechanisms and surmount the resistance is likely to improve chemotherapy. Nilotinib is a very effective drug in the treatment of imatinib-sensitive or -resistant patients.

View Article and Find Full Text PDF

In this study, we aimed to increase the sensitivity of human K562 and Meg-01 chronic myeloid leukemia (CML) cells to nilotinib by targeting bioactive sphingolipids, in addition to investigating the roles of ceramide metabolizing genes in nilotinib induced apoptosis. Cytotoxic effects of nilotinib, C8:ceramide, glucosyle ceramide synthase (GCS) and sphingosine kinase-1 (SK-1) inhibitors were determined by XTT cell proliferation assay and synergism between the agents was determined by isobologram analysis. Also, quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) results demonstrated that expression levels of longevity assurance (LASS) genes in response to nilotinib were correlated with sensitivity to nilotinib.

View Article and Find Full Text PDF