Publications by authors named "Emek Goksu Durmusoglu"

Fluorescent, CdSe/CdS core/crown heterostructured nanoplatelets (NPLs) were transferred to the water a simple, single-step ligand exchange using 2-mercaptopropionic acid in a simple extraction process. These stable, aqueous NPLs were loaded with a modal drug, 5-aminolevulinic acid (ALA). ALA-loaded NPLs emerged as a new class of theranostic nanoparticles for image-guided enhanced photodynamic therapy of both androgen-dependent and -independent human prostate cancer cells.

View Article and Find Full Text PDF

Solution-processed two-dimensional nanoplatelets (NPLs) allowing lateral growth of a shell (crown) by not affecting the pure confinement in the vertical direction provide unprecedented opportunities for designing heterostructures for light-emitting and -harvesting applications. Here, we present a pathway for designing and synthesizing colloidal type-II core/(multi-)crown hetero-NPLs and investigate their optical properties. Stoke's shifted broad photoluminescence (PL) emission and long PL lifetime (∼few 100 ns) together with our wavefunction calculations confirm the type-II electronic structure in the synthesized CdS/CdSeTe core/crown hetero-NPLs.

View Article and Find Full Text PDF

Characterized by their strong 1D confinement and long-lifetime red-shifted emission spectra, colloidal nanoplatelets (NPLs) with type-II electronic structure provide an exciting ground to design complex heterostructures with remarkable properties. This work demonstrates the synthesis and optical characterization of CdSe/CdSeTe/CdTe core/crown/crown NPLs having a step-wise gradient electronic structure and disproportional wavefunction distribution, in which the excitonic properties of the electron and hole can be finely tuned through adjusting the geometry of the intermediate crown. The first crown with staggered configuration gives rise to a series of direct and indirect transition channels that activation/deactivation of each channel is possible through wavefunction engineering.

View Article and Find Full Text PDF

We demonstrate amplified spontaneous emission (ASE) in solution with ultralow thresholds of 30 μJ/cm in red and of 44 μJ/cm in green from engineered colloidal quantum well (CQW) heterostructures. For this purpose, CdSe/CdS core/crown CQWs, designed to hit the green region, and CdSe/CdS@CdZnS core/crown@gradient-alloyed shell CQWs, further tuned to reach the red region by shell alloying, were employed to achieve high-performance ASE in the visible range. The net modal gain of these CQWs reaches 530 cm for the green and 201 cm for the red, 2-3 orders of magnitude larger than those of colloidal quantum dots (QDs) in solution.

View Article and Find Full Text PDF