Publications by authors named "Emek Baris Kucuktabak"

Physical interaction between individuals plays an important role in human motor learning and performance during shared tasks. Using robotic devices, researchers have studied the effects of dyadic haptic interaction mostly focusing on the upper-limb. Developing infrastructure that enables physical interactions between multiple individuals' lower limbs can extend the previous work and facilitate investigation of new dyadic lower-limb rehabilitation schemes.

View Article and Find Full Text PDF

While treating sensorimotor impairments, a therapist may provide physical assistance by guiding their patient's limb to teach a desired movement. In this scenario, a key aspect is the compliance of the interaction, as the therapist can provide subtle cues or impose a movement as demonstration. One approach to studying these interactions involves haptically connecting two individuals through robotic interfaces.

View Article and Find Full Text PDF

Optimizing skill acquisition during novel motor tasks and regaining lost motor functions have been the interest of many researchers over the past few decades. One approach shown to accelerate motor learning involves haptically coupling two individuals through robotic interfaces. Studies have shown that an individual's solo performance during upper-limb tracking tasks may improve after haptically-coupled training with a partner.

View Article and Find Full Text PDF

Exoskeletons operate in continuous haptic interaction with a human limb. Thus, this interaction is a key factor to consider during the development of hardware and control policies for these devices. Physics simulations can complement real-world experiments for prototype validation, leading to higher efficiency in hardware and software development iterations as well as increased safety for participants and robot hardware.

View Article and Find Full Text PDF

Background: Human-human (HH) interaction mediated by machines (e.g., robots or passive sensorized devices), which we call human-machine-human (HMH) interaction, has been studied with increasing interest in the last decade.

View Article and Find Full Text PDF