Publications by authors named "Embriaco A"

Morphological changes that may arise through a treatment course are probably one of the most significant sources of range uncertainty in proton therapy. Non-invasive treatment monitoring is useful to increase treatment quality. The INSIDE in-beam Positron Emission Tomography (PET) scanner performs range monitoring in proton and carbon therapy treatments at the National Center of Oncological Hadrontherapy (CNAO).

View Article and Find Full Text PDF

The main objective of this work consists of applying, for the first time, the BIANCA (BIophysical ANalysis of Cell death and chromosome Aberrations) biophysical model to the RBE calculation for C-ion cancer patients, and comparing the outcomes with those obtained by the LEM I model, which is applied in clinics. Indeed, the continuous development of heavy-ion cancer therapy requires modelling of biological effects of ion beams on tumours and normal tissues. The relative biological effectiveness (RBE) of heavy ions is higher than that of protons, with a significant variation along the beam path.

View Article and Find Full Text PDF

Space research seems to be object of a renewed interest, also considering that human missions to the Moon, and possibly Mars, are being planned. Among the risks affecting such missions, astronauts' exposure to space radiation is a major concern. In this work, the question of the evaluation of biological damage by Galactic Cosmic Rays (GCR) was addressed by a biophysical model called BIophysical ANalysis of Cell death and chromosome Aberrations (BIANCA), which simulates the induction of cell death and chromosome aberrations by different ions.

View Article and Find Full Text PDF

Purpose: In-beam positron emission tomography (PET) is one of the modalities that can be used for in vivo noninvasive treatment monitoring in proton therapy. Although PET monitoring has been frequently applied for this purpose, there is still no straightforward method to translate the information obtained from the PET images into easy-to-interpret information for clinical personnel. The purpose of this work is to propose a statistical method for analyzing in-beam PET monitoring images that can be used to locate, quantify, and visualize regions with possible morphological changes occurring over the course of treatment.

View Article and Find Full Text PDF

Chromosome aberrations are widely considered among the best biomarkers of radiation health risk due to their relationship with late cancer incidence. In particular, aberrations in peripheral blood lymphocytes (PBL) can be regarded as indicators of hematologic toxicity, which is a major limiting factor of radiotherapy total dose. In this framework, a radiobiological database describing the induction of PBL dicentrics as a function of ion type and energy was developed by means of the BIANCA (BIophysical ANalysis of Cell death and chromosome Aberrations) biophysical model, which has been previously applied to predict the effectiveness of therapeutic-like ion beams at killing tumour cells.

View Article and Find Full Text PDF

Clinical routine in proton therapy currently neglects the radiobiological impact of nuclear target fragments generated by proton beams. This is partially due to the difficult characterization of the irradiation field. The detection of low energetic fragments, secondary protons and fragments, is in fact challenging due to their very short range.

View Article and Find Full Text PDF

While cancer therapy with protons and C-ions is continuously spreading, in the near future patients will be also treated with He-ions which, in comparison to photons, combine the higher precision of protons with the higher relative biological effectiveness (RBE) of C-ions. Similarly to C-ions, also for He-ions the RBE variation along the beam must be known as precisely as possible, especially for active beam delivery systems. In this framework the BIANCA biophysical model, which has already been applied to calculate the RBE along proton and C-ion beams, was extended toHe-ions and, following interface with the FLUKA code, was benchmarked against cell survival data on CHO normal cells and Renca tumour cells irradiated at different positions along therapeutic-likeHe-ion beams at the Heidelberg Ion-beam Therapy centre, where the first He-ion patient will be treated soon.

View Article and Find Full Text PDF

Particle therapy in which deep seated tumours are treated using C ions (Carbon Ions RadioTherapy or CIRT) exploits the high conformity in the dose release, the high relative biological effectiveness and low oxygen enhancement ratio of such projectiles. The advantages of CIRT are driving a rapid increase in the number of centres that are trying to implement such technique. To fully profit from the ballistic precision achievable in delivering the dose to the target volume an online range verification system would be needed, but currently missing.

View Article and Find Full Text PDF

In proton therapy, secondary fragments are created in nuclear interactions of the beam with the target nuclei. The secondary fragments have low kinetic energies and high atomic numbers as compared to primary protons. Fragments have a high LET and deposit all their energy close to the generation point.

View Article and Find Full Text PDF

The high dose conformity and healthy tissue sparing achievable in Particle Therapy when using C ions calls for safety factors in treatment planning, to prevent the tumor under-dosage related to the possible occurrence of inter-fractional morphological changes during a treatment. This limitation could be overcome by a range monitor, still missing in clinical routine, capable of providing on-line feedback. The Dose Profiler (DP) is a detector developed within the INnovative Solution for In-beam Dosimetry in hadronthErapy (INSIDE) collaboration for the monitoring of carbon ion treatments at the CNAO facility (Centro Nazionale di Adroterapia Oncologica) exploiting the detection of charged secondary fragments that escape from the patient.

View Article and Find Full Text PDF

Particle therapy (PT) can exploit heavy ions (such as He, C or O) to enhance the treatment efficacy, profiting from the increased Relative Biological Effectiveness and Oxygen Enhancement Ratio of these projectiles with respect to proton beams. To maximise the gain in tumor control probability a precise online monitoring of the dose release is needed, avoiding unnecessary large safety margins surroundings the tumor volume accounting for possible patient mispositioning or morphological changes with respect to the initial CT scan. The Dose Profiler (DP) detector, presented in this manuscript, is a scintillating fibres tracker of charged secondary particles (mainly protons) that will be operating during the treatment, allowing for an online range monitoring.

View Article and Find Full Text PDF

Purpose: We investigate the possibility to improve the accuracy of the lateral dose profile for He beams with a novel approach, by extending an already validated model for proton beams to heavier ions.

Methods: The full Molière theory for the Coulomb multiple scattering is applied to the case of He beams, with a complete separation of the electromagnetic and of the nuclear contributions in the calculation of the total dose. The latter is described with only three free parameters.

View Article and Find Full Text PDF

We consider the evaluation of lateral spread distributions of charged particle beams at therapeutic energies, due to an absorber in the form of a homogeneous slab or of a stack. We show that the Molière theory has the same degree of flexibility as the Fermi-Eyges, but is much more accurate and does not present particular computing difficulties with the energy loss formula we have employed. It is also shown that the non-Gaussian shape of the projected one dimensional (1D) distributions is not a complication for passing from the projected to the spatial two-dimensional (2D) distribution, if one assumes circular symmetry.

View Article and Find Full Text PDF

Purpose: The accurate and fast calculation of the dose in proton radiation therapy is an essential ingredient for successful treatments. We propose a novel approach with a minimal number of parameters.

Methods: The approach is based on the exact calculation of the electromagnetic part of the interaction, namely the Molière theory of the multiple Coulomb scattering for the transversal 1D projection and the Bethe-Bloch formula for the longitudinal stopping power profile, including a gaussian energy straggling.

View Article and Find Full Text PDF

A pencil beam model for the calculation of the lateral scattering in water of protons for any therapeutic energy and depth is presented. It is based on the full Molière theory, taking into account the energy loss and the effects of mixtures and compounds. Concerning the electromagnetic part, the model has no free parameters and is in very good agreement with the FLUKA Monte Carlo (MC) code.

View Article and Find Full Text PDF

Purpose: The accurate evaluation of the lateral dose profile is an important issue in the field of proton radiation therapy. The beam spread, due to Multiple Coulomb Scattering (MCS), is described by the Molière's theory. To take into account also the contribution of nuclear interactions, modern Treatment Planning Systems (TPSs) generally approximate the dose profiles by a sum of Gaussian functions.

View Article and Find Full Text PDF