Mitosomes are highly reduced forms of mitochondria which have lost two of the 'defining' features of the canonical organelle, the mitochondrial genome, and the capacity to generate energy in the form of ATP. Mitosomes are found in anaerobic protists and obligate parasites and, in most of the studied organisms, have a conserved function in the biosynthesis of iron-sulfur clusters (ISC) that are indispensable cofactors of many essential proteins. The genomes of some mitosome-bearing human pathogenic Microsporidia encode homologues of an alternative oxidase (AOX).
View Article and Find Full Text PDFCommon molecular phylogenetic characteristics such as long branches and compositional heterogeneity can be problematic for phylogenetic reconstruction when using amino acid data. Recoding alignments to reduced alphabets before phylogenetic analysis has often been used both to explore and potentially decrease the effect of such problems. We tested the effectiveness of this strategy on topological accuracy using simulated data on four-taxon trees.
View Article and Find Full Text PDFThere is an expectation that analyses of molecular sequences might be able to distinguish between alternative hypotheses for ancient relationships, but the phylogenetic methods used and types of data analyzed are of critical importance in any attempt to recover historical signal. Here, we discuss some common issues that can influence the topology of trees obtained when using overly simple models to analyze molecular data that often display complicated patterns of sequence heterogeneity. To illustrate our discussion, we have used three examples of inferred relationships which have changed radically as models and methods of analysis have improved.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFHypotheses about the origin of eukaryotic cells are classically framed within the context of a universal 'tree of life' based on conserved core genes. Vigorous ongoing debate about eukaryote origins is based on assertions that the topology of the tree of life depends on the taxa included and the choice and quality of genomic data analysed. Here we have reanalysed the evidence underpinning those claims and apply more data to the question by using supertree and coalescent methods to interrogate >3,000 gene families in archaea and eukaryotes.
View Article and Find Full Text PDFHydrogenosomes are H2-producing mitochondrial homologs found in some anaerobic microbial eukaryotes that provide a rare intracellular niche for H2-utilizing endosymbiotic archaea. Among ciliates, anaerobic and aerobic lineages are interspersed, demonstrating that the switch to an anaerobic lifestyle with hydrogenosomes has occurred repeatedly and independently. To investigate the molecular details of this transition, we generated genomic and transcriptomic data sets from anaerobic ciliates representing three distinct lineages.
View Article and Find Full Text PDFPlasma membrane-located transport proteins are key adaptations for obligate intracellular Microsporidia parasites, because they can use them to steal host metabolites the parasites need to grow and replicate. However, despite their importance, the functions and substrate specificities of most Microsporidia transporters are unknown. Here, we provide functional data for a family of transporters conserved in all microsporidian genomes and also in the genomes of related endoparasites.
View Article and Find Full Text PDFEndosymbiosis is a widespread phenomenon in the microbial world and can be based on diverse interactions between endosymbiont and host cell. The vast majority of the known endosymbiotic interactions involve bacteria that have invaded eukaryotic host cells. However, methanogenic archaea have been found to thrive in anaerobic, hydrogenosome-containing protists and it was suggested that this symbiosis is based on the transfer of hydrogen.
View Article and Find Full Text PDFThe acquisition of genes by horizontal transfer can impart entirely new biological functions and provide an important route to major evolutionary innovation. Here we have used ancient gene reconstruction and functional assays to investigate the impact of a single horizontally transferred nucleotide transporter into the common ancestor of the Microsporidia, a major radiation of intracellular parasites of animals and humans. We show that this transporter provided early microsporidians with the ability to steal host ATP and to become energy parasites.
View Article and Find Full Text PDFMany anaerobic ciliated protozoa contain organelles of mitochondrial ancestry called hydrogenosomes. These organelles generate molecular hydrogen that is consumed by methanogenic Archaea, living in endosymbiosis within many of these ciliates. Here we describe a new species of anaerobic ciliate, n.
View Article and Find Full Text PDFMost phylogenetic models assume that the evolutionary process is stationary and reversible. In addition to being biologically improbable, these assumptions also impair inference by generating models under which the likelihood does not depend on the position of the root. Consequently, the root of the tree cannot be inferred as part of the analysis.
View Article and Find Full Text PDFAmino acid transporters are essential components of prokaryote and eukaryote cells, possess distinct physiological functions, and differ markedly in substrate specificity. Amino acid transporters can be both drug targets and drug transporters (bioavailability, targeting) with many monogenic disorders resulting from dysfunctional membrane transport. The largest collection of amino acid transporters (including the mammalian SLC6, SLC7, SLC32, SLC36, and SLC38 families), across all kingdoms of life, is within the Amino acid-Polyamine-organoCation (APC) superfamily.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2017
A root for the archaeal tree is essential for reconstructing the metabolism and ecology of early cells and for testing hypotheses that propose that the eukaryotic nuclear lineage originated from within the Archaea; however, published studies based on outgroup rooting disagree regarding the position of the archaeal root. Here we constructed a consensus unrooted archaeal topology using protein concatenation and a multigene supertree method based on 3,242 single gene trees, and then rooted this tree using a recently developed model of genome evolution. This model uses evidence from gene duplications, horizontal transfers, and gene losses contained in 31,236 archaeal gene families to identify the most likely root for the tree.
View Article and Find Full Text PDFPlasma membrane-located nucleotide transport proteins (NTTs) underpin the lifestyle of important obligate intracellular bacterial and eukaryotic pathogens by importing energy and nucleotides from infected host cells that the pathogens can no longer make for themselves. As such their presence is often seen as a hallmark of an intracellular lifestyle associated with reductive genome evolution and loss of primary biosynthetic pathways. Here, we investigate the phylogenetic distribution of NTT sequences across the domains of cellular life.
View Article and Find Full Text PDFMicrosporidians are obligate intracellular parasites that have minimized their genome content and sub-cellular structures by reductive evolution. Here, we demonstrate that cristae-deficient mitochondria (mitosomes) of Trachipleistophora hominis are the functional site of iron-sulfur cluster (ISC) assembly, which we suggest is the essential task of these organelles. Cell fractionation, fluorescence imaging and immunoelectron microscopy demonstrate that mitosomes contain a complete pathway for [2Fe-2S] cluster biosynthesis that we biochemically reconstituted using purified mitosomal ISC proteins.
View Article and Find Full Text PDFMicrosporidia are strict obligate intracellular parasites that infect a wide range of eukaryotes including humans and economically important fish and insects. Surviving and flourishing inside another eukaryotic cell is a very specialised lifestyle that requires evolutionary innovation. Genome sequence analyses show that microsporidia have lost most of the genes needed for making primary metabolites, such as amino acids and nucleotides, and also that they have only a limited capacity for making adenosine triphosphate (ATP).
View Article and Find Full Text PDFThe Microsporidia are a major group of intracellular fungi and important parasites of animals including insects, fish, and immunocompromised humans. Microsporidian genomes have undergone extreme reductive evolution but there are major differences in genome size and structure within the group: some are prokaryote-like in size and organisation (<3 Mb of gene-dense sequence) while others have more typically eukaryotic genome architectures. To gain fine-scale, population-level insight into the evolutionary dynamics of these tiny eukaryotic genomes, we performed the broadest microsporidian population genomic study to date, sequencing geographically isolated strains of Spraguea, a marine microsporidian infecting goosefish worldwide.
View Article and Find Full Text PDFThe remodelling of organelle function is increasingly appreciated as a central driver of eukaryotic biodiversity and evolution. Kinetoplastids including Trypanosoma and Leishmania have evolved specialized peroxisomes, called glycosomes. Glycosomes uniquely contain a glycolytic pathway as well as other enzymes, which underpin the physiological flexibility of these major human pathogens.
View Article and Find Full Text PDFBackground: Trachipleistophora hominis was isolated from an HIV/AIDS patient and is a member of a highly successful group of obligate intracellular parasites.
Methods: Here we have investigated the evolution of the parasite and the interplay between host and parasite gene expression using transcriptomics of T. hominis-infected rabbit kidney cells.
Philos Trans R Soc Lond B Biol Sci
September 2015
The root of a phylogenetic tree is fundamental to its biological interpretation, but standard substitution models do not provide any information on its position. Here, we describe two recently developed models that relax the usual assumptions of stationarity and reversibility, thereby facilitating root inference without the need for an outgroup. We compare the performance of these models on a classic test case for phylogenetic methods, before considering two highly topical questions in evolutionary biology: the deep structure of the tree of life and the root of the archaeal radiation.
View Article and Find Full Text PDFThe origin of eukaryotic cells is one of the most fascinating challenges in biology, and has inspired decades of controversy and debate. Recent work has led to major upheavals in our understanding of eukaryotic origins and has catalysed new debates about the roles of endosymbiosis and gene flow across the tree of life. Improved methods of phylogenetic analysis support scenarios in which the host cell for the mitochondrial endosymbiont was a member of the Archaea, and new technologies for sampling the genomes of environmental prokaryotes have allowed investigators to home in on closer relatives of founding symbiotic partners.
View Article and Find Full Text PDFThe Thaumarchaeota is an abundant and ubiquitous phylum of archaea that plays a major role in the global nitrogen cycle. Previous analyses of the ammonia monooxygenase gene amoA suggest that pH is an important driver of niche specialization in these organisms. Although the ecological distribution and ecophysiology of extant Thaumarchaeota have been studied extensively, the evolutionary rise of these prokaryotes to ecological dominance in many habitats remains poorly understood.
View Article and Find Full Text PDFPrimary plastids descend from the cyanobacterial endosymbiont of an ancient eukaryotic host, but the initial selective drivers that stabilized the association between these two cells are still unclear. One hypothesis that has achieved recent prominence suggests that the first role of the cyanobiont was in energy provision for a host cell whose reserves were being depleted by an intracellular chlamydial pathogen. A pivotal claim is that it was chlamydial proteins themselves that converted otherwise unusable cyanobacterial metabolites into host energy stores.
View Article and Find Full Text PDF