Effective, practical options for managing disease in wildlife populations are limited, especially after diseases become established. Removal strategies (e.g.
View Article and Find Full Text PDFMigration is a critical behavioral strategy necessary for population persistence and ecosystem functioning, but migration routes have been increasingly disrupted by anthropogenic activities, including energy development. Wind energy is the world's fastest growing source of electricity and represents an important alternative to hydrocarbon extraction, but its effects on migratory species beyond birds and bats are not well understood. We evaluated the effects of wind-energy development on pronghorn migration, including behavior and habitat selection, to assess potential effects on connectivity and other functional benefits including stopovers.
View Article and Find Full Text PDFClimate warming creates energetic challenges for endothermic species by increasing metabolic and hydric costs of thermoregulation. Although endotherms can invoke an array of behavioural and physiological strategies for maintaining homeostasis, the relative effectiveness of those strategies in a climate that is becoming both warmer and drier is not well understood. In accordance with the heat dissipation limit theory which suggests that allocation of energy to growth and reproduction by endotherms is constrained by the ability to dissipate heat, we expected that patterns of habitat use by large, heat-sensitive mammals across multiple scales are critical for behavioural thermoregulation during periods of potential heat stress and that they must invest a large portion of time to maintain heat balance.
View Article and Find Full Text PDFContemporary climate change is altering temperature profiles across the globe. Increasing temperatures can reduce the amount of time during which conditions are suitable for animals to engage in essential activities, such as securing food. Behavioural plasticity, the ability to alter behaviour in response to the environment, may provide animals with a tool to adjust to changes in the availability of suitable thermal conditions.
View Article and Find Full Text PDFContemporary climate change affects nearly all biomes, causing shifts in animal distributions and resource availability. Changes in resource selection may allow individuals to offset climatic stress, thereby providing a mechanism for persistence amidst warming conditions. Whereas the role of predation risk in food choice has been studied broadly, the extent to which individuals respond to thermoregulatory risk by changing resource preferences is unclear.
View Article and Find Full Text PDF