Background: Autophagy is a cellular survival mechanism involved in several human diseases, but its participation in the development of salivary gland tumors is not fully understood. This study investigated the immunoexpression of autophagy-related proteins (autophagy-related 7 [Atg7], microtubule-associated protein 1 light chain 3A [LC3A], microtubule-associated protein 1 light chain 3B [LC3B], protein p62 [p62], and phosphorylated mammalian target of rapamycin [p-mTOR]) in pleomorphic adenoma (PA), polymorphous adenocarcinoma (PAC), mucoepidermoid carcinoma (MEC), and adenoid cystic carcinoma (ACC) of salivary glands.
Methods: Twenty PAs, 20 PACs, 20 MECs, and 14 ACCs were selected.
The aim of this study was to develop polymeric nanofibers for controlled administration of Amphotericin B (AmpB), using the solution centrifugation technique, characterizing its microstructural and physical properties, release rate, and activity against and species. The core-shell nanofibers incorporated with AmpB were synthesized by Solution Blow Spinning (SBS) and characterized by scanning electron microscopy (SEM), differential scanning calorimetry, X-Ray diffraction, and drug release assay. leishmanicidal and antifungal activity were also evaluated.
View Article and Find Full Text PDFDrug Deliv Transl Res
December 2020
The Melaleuca alternifolia essential oil (MEO) has been widely used due to its healing and antimicrobial action. Its incorporation into drug delivery systems is a reality, and numerous studies have already been developed for this purpose. In this regard, the aim of this work was to develop, characterize, and evaluate the in vivo pharmacological activity of bicontinuous microemulsions (BME) containing MEO.
View Article and Find Full Text PDF