Publications by authors named "Emanuele S Scarpa"

During aging, bone marrow mesenchymal stromal cells (MSCs)-the precursors of osteoblasts-undergo cellular senescence, losing their osteogenic potential and acquiring a pro-inflammatory secretory phenotype. These dysfunctions cause bone loss and lead to osteoporosis. Prevention and intervention at an early stage of bone loss are important, and naturally active compounds could represent a valid help in addition to diet.

View Article and Find Full Text PDF

Sinusoidal endothelial cells are the predominant vascular surface of the bone marrow and constitute the functional hematopoietic niche where hematopoietic stem and progenitor cells receive cues for self-renewal, survival, and differentiation. In the bone marrow hematopoietic niche, the oxygen tension is usually very low, and this condition affects stem and progenitor cell proliferation and differentiation and other important functions of this region. Here, we have investigated in vitro the response of endothelial cells to a marked decrease in O partial pressure to understand how the basal gene expression of some relevant biological factors (i.

View Article and Find Full Text PDF

The application of superparamagnetic iron oxide nanoparticles (SPIONs) in drug delivery, magnetic resonance imaging, cell tracking, and hyperthermia has been long exploited regarding their inducible magnetic properties. Nevertheless, SPIONs remain rapidly cleared from the circulation by the reticuloendothelial system (RES) or mononuclear phagocyte system, with uptake dependent on several factors such as the hydrodynamic diameter, electrical charge and surface coating. This rapid clearance of SPION-based theranostic agents from circulation is one of the main challenges hampering the medical applications that differ from RES targeting.

View Article and Find Full Text PDF

In the bone marrow (BM) hematopoietic niche, the oxygen tension is usually very low. Such condition affects stem and progenitor cell proliferation and differentiation and, at cellular level regulates hematopoietic growth factors, chemokines and adhesion molecules expression. In turn, these molecules affect the proliferation and maturation of other cellular components of the niche.

View Article and Find Full Text PDF

This review summarizes the latest advancements in phytochemicals as functional antiviral agents. We focused on flavonoids, like apigenin, vitexin, quercetin, rutin and naringenin, which have shown a wide range of biological effects including antiviral activities. The molecular mechanisms of their antiviral effects mainly consist in the inhibition of viral neuraminidase, proteases and DNA/RNA polymerases, as well as in the modification of various viral proteins.

View Article and Find Full Text PDF

Gastric cancer (GC) is one of the most common and lethal cancers. Alterations in the ubiquitin (Ub) system play key roles in the carcinogenetic process and in metastasis development. Overexpression of transcription factors YY1, HSF1 and SP1, known to regulate Ub gene expression, is a predictor of poor prognosis and shorter survival in several cancers.

View Article and Find Full Text PDF

Moringin (MOR), a glycosyl-isothiocyanate obtained by myrosinase-catalyzed hydrolysis of the precursor 4-(α-l-rhamnosyloxy)-benzyl glucosinolate (glucomoringin), found predominantly in the seeds of Moringa oleifera, shows anticancer effects against several cancer cell lines. Avenanthramide (AVN) 2f is a phytochemical purified from oats with antioxidant and anticancer properties. The aim of this study was to investigate the antiproliferative and proapoptotic effects of MOR and AVN 2f used alone and in combination on Hep3B cancer cells, which are highly resistant to conventional anticancer drugs.

View Article and Find Full Text PDF

Purpose: CaCo-2 colon cancer cells and HepG2 liver cancer cells represent two malignant cell lines, which show a high resistance to apoptosis induced by the conventional anticancer drugs. Vitexin-2-O-xyloside (XVX) and avenanthramides (AVNs) are naturally occurring dietary agents from Beta vulgaris var. cicla L.

View Article and Find Full Text PDF

In this investigation, 14 extra virgin olive oils (EVOOs), produced with Leccino and Raggiola olive cultivars, by a new two-way (2W) decanter were compared with 14 EVOOs produced by means of a conventional three-way (3W) decanter. The 2W EVOOs had higher phenol concentrations, as shown by high-performance liquid chromatography/diode array detection (HPLC-DAD) analysis and yielded a higher extraction of the 3,4-DHPEA-EDA (oleacein), 3,4-DHPEA-EA (oleuropein aglycone) and p-HPEA-EDA (oleocanthal). The concentrations of lignans, (+)-pinoresinol and (+)-1-acetoxypinoresinol, detected by HPLC-FLD equipment, were higher in the 2W EVOOs than they were in EVOOs produced using the 3W system.

View Article and Find Full Text PDF

Mono-ADP-ribosylation is a post-translational modification that was discovered more than five decades ago, and it consists of the enzymatic transfer of ADP-ribose from NAD⁺ to acceptor proteins. In viruses and prokaryotes, mono-ADP-ribosylation is mainly, but not exclusively, a mechanism used to take control of the host cell. In mammals, mono-ADP-ribosylation serves to regulate protein functions, and it is catalysed by two families of toxin-related cellular ADP-ribosyltransferases: ecto-enzymes that modify various cell-surface proteins, like integrins and receptors, and intracellular enzymes that act on a variety of nuclear and cytosolic proteins.

View Article and Find Full Text PDF

The post-translational modifications of proteins by mono- and poly-ADP-ribosylation involve the cleavage of βNAD⁺, with the release of its nicotinamide moiety, accompanied by the transfer of a single (mono) or several (poly) ADP-ribose molecules from βNAD⁺ to a specific amino-acid residue of various cellular proteins. Thus, both mono- and poly-ADP-ribosylation are NAD⁺-consuming reactions. ADP-ribosylation reactions have been reported to have important roles in the nucleus, and in mitochondrial activity.

View Article and Find Full Text PDF

During the development, progression and dissemination of neoplastic lesions, cancer cells can hijack normal pathways and mechanisms. This includes the control of the function of cellular proteins through reversible post-translational modifications, such as ADP-ribosylation, phosphorylation, and acetylation. In the case of mono-ADP-ribosylation and poly-ADP-ribosylation, the addition of one or several units of ADP-ribose to target proteins occurs via two families of enzymes that can generate ADP-ribosylated proteins: the diphtheria toxin-like ADP-ribosyltransferase (ARTD) family, comprising 17 different proteins that are either poly-ADP-ribosyltransferases or mono-ADP-ribosyltransferases or inactive enzymes; and the clostridial toxin-like ADP-ribosyltransferase family, with four human members, two of which are active mono-ADP-ribosyltransferases, and two of which are enzymatically inactive.

View Article and Find Full Text PDF

Human NAD(P)H: quinone oxidoreductase 1 (NQO1) catalyzes the obligatory two-electron reduction of quinones. For this peculiar catalytic mechanism, the enzyme is considered an important cytoprotector. The NQO1 gene is expressed in all human tissues, unless a polymorphism due to C609T point mutation is present.

View Article and Find Full Text PDF