Publications by authors named "Emanuele Roccia"

Quantum key distribution-exchanging a random secret key relying on a quantum mechanical resource-is the core feature of secure quantum networks. Entanglement-based protocols offer additional layers of security and scale favorably with quantum repeaters, but the stringent requirements set on the photon source have made their use situational so far. Semiconductor-based quantum emitters are a promising solution in this scenario, ensuring on-demand generation of near-unity-fidelity entangled photons with record-low multiphoton emission, the latter feature countering some of the best eavesdropping attacks.

View Article and Find Full Text PDF

The Clausius inequality has deep implications for reversibility and the arrow of time. Quantum theory is able to extend this result for closed systems by inspecting the trajectory of the density matrix on its manifold. Here we show that this approach can provide an upper and lower bound to the irreversible entropy production for open quantum systems as well.

View Article and Find Full Text PDF

The simplicity of a question, such as wondering whether or not correlations characterize a certain system, collides with the experimental difficulty of accessing such information. Here we present a low-demanding experimental approach that refers to the use of a metrology scheme to obtain a conservative estimate of the strength of frequency correlations. Our test bed is the widespread case of a photon pair produced per downconversion.

View Article and Find Full Text PDF

Not much, in the end. Here we put forward some considerations on how Hong-Ou-Mandel interferometry provides signatures of frequency entanglement in the two-photon state produced by parametric down-conversion. We find that some quantitative information can be inferred in the limit of long-pulse pumping, while the short-pulse limit remains elusive.

View Article and Find Full Text PDF

Standard thermometry employs the thermalization of a probe with the system of interest. This approach can be extended by incorporating the possibility of using the nonequilibrium states of the probe and the presence of coherence. Here, we illustrate how these concepts apply to the single-qubit thermometer introduced by Jevtic et al.

View Article and Find Full Text PDF