Resveratrol (RSV) is a nutraceutical compound belonging to the nonflavonoid polyphenol family, whose antioxidants, anti-inflammatory, and antitumoral properties have been widely investigated. The ability of RSV to provide beneficial effects for neurological, cardiovascular, and cancer disorders rekindled the interest to explore the molecular mechanisms behind its pleiotropic effects, which are due to the modulation of coding and noncoding genes involved in many key biological pathways. With a computational approach, including docking studies and thermodynamics calculations followed by 200-ns-long molecular dynamics and a clustering analysis, we hypothesized the stabilizing binding between RSV and G4 structures of telomeric repeat-containing RNA (TERRA), which is a tumor-suppressive long noncoding RNAs (lncRNA) involved in the regulation of telomere maintenance.
View Article and Find Full Text PDFThe growing information currently available on the central role of non-coding RNAs (ncRNAs) including microRNAs (miRNAS) and long non-coding RNAs (lncRNAs) for chronic and degenerative human diseases makes them attractive therapeutic targets. RNAs carry out different functional roles in human biology and are deeply deregulated in several diseases. So far, different attempts to therapeutically target the 3D RNA structures with small molecules have been reported.
View Article and Find Full Text PDF