Publications by authors named "Emanuele L Secco"

The worldwide COVID-19 outbreak has dramatically called for appropriate responses from governments. Scientists estimated both the basic reproduction number and the lethality of the virus. The former one depends on several factors (environment and social behavior, virus characteristics, removal rate).

View Article and Find Full Text PDF

Active enrollment in rehabilitation training yields better treatment outcomes. This paper introduces an exoskeleton-assisted hand rehabilitation system. It is the first attempt to combine fingertip cutaneous haptic stimulation with exoskeleton-assisted hand rehabilitation for training participation enhancement.

View Article and Find Full Text PDF

This paper explores methods that make use of visual cues aimed at generating actual haptic sensation to the user, namely pseudo-haptics. We propose a new pseudo-haptic feedback-based method capable of conveying 3D haptic information and combining visual haptics with force feedback to enhance the user's haptic experience. We focused on an application related to tumor identification during palpation and evaluated the proposed method in an experimental study where users interacted with a haptic device and graphical interface while exploring a virtual model of soft tissue, which represented stiffness distribution of a silicone phantom tissue with embedded hard inclusions.

View Article and Find Full Text PDF

This paper presents a novel three-axis force sensor based on optical photo interrupters and integrated with the robot arm STIFF-FLOP (STIFFness controllable Flexible and Learnable Manipulator for Surgical Operations) to measure external interacting forces and torques. The ring-shape bio-compatible sensor presented here embeds the distributed actuation and sensing system of the STIFF-FLOP manipulator and is applicable to the geometry of its structure as well to the structure of any other similar soft robotic manipulator. Design and calibration procedures of the device are introduced: experimental results allow defining a stiffness sensor matrix for real-time estimation of force and torque components and confirm the usefulness of the proposed optical sensing approach.

View Article and Find Full Text PDF

In the last few years, much effort has been devoted to the development of wearable sensing systems able to monitor physiological, behavioral, and environmental parameters. Less has been done on the accurate testing and assessment of this instrumentation, especially when considering devices thought to be used in harsh environments by subjects or operators performing intense physical activities. This paper presents methodology and results of the evaluation of wearable physiological sensors under these conditions.

View Article and Find Full Text PDF

The final generation of ProeTEX prototypes has been delivered in April 2010: it is based on two sets of sensorized garments devoted to monitor the health status of emergency operators working in harsh environments. This new release of garments shows several improvements with respect to the previous ones, and it is characterized by a major specialization to the requirements imposed by the different categories of end-users (Fire-Fighters, Civil Protection rescuers) addressed by the project. Each ProeTEX prototype is provided with a communication infrastructure allowing the real-time remote transmission of data recorded by the wearable sensors, and the presentation of such data to possible managers supervising the activities of the first line responders.

View Article and Find Full Text PDF

Assessment of human activity and posture with triaxial accelerometers provides insightful information about the functional ability: classification of human activities in rehabilitation and elderly surveillance contexts has been already proposed in the literature. In the meanwhile, recent technological advances allow developing miniaturized wearable devices, integrated within garments, which may extend this assessment to novel tasks, such as real-time remote surveillance of workers and emergency operators intervening in harsh environments. We present an algorithm for human posture and activity-level detection, based on the real-time processing of the signals produced by one wearable triaxial accelerometer.

View Article and Find Full Text PDF

Background: Functionality, controllability and cosmetics are the key issues to be addressed in order to accomplish a successful functional substitution of the human hand by means of a prosthesis. Not only the prosthesis should duplicate the human hand in shape, functionality, sensorization, perception and sense of body-belonging, but it should also be controlled as the natural one, in the most intuitive and undemanding way. At present, prosthetic hands are controlled by means of non-invasive interfaces based on electromyography (EMG).

View Article and Find Full Text PDF

Financed by the European Commission, a consortium of 23 European partners, consisting of universities, research institutions, industries, and organizations operating in the field of emergency management, is developing a new generation of "smart" garments for emergency-disaster personnel. Garments integrate newly developed wearable and textile solutions, such as commercial portable sensors and devices, in order to continuously monitor risks endangering rescuers' lives. The system enables detection of health-state parameters of the users (heart rate, breathing rate, body temperature, blood oxygen saturation, position, activity, and posture) and environmental variables (external temperature, presence of toxic gases, and heat flux passing through the garments), to process data and remotely transmit useful information to the operation manager.

View Article and Find Full Text PDF

The recent disaster provoked by the earthquake in middle Italy has pointed out the need for minimizing risks endangering rescuers' lives. An European Project called ProeTEX (Protection e-Textiles: MicroNanoStructured fiber systems for Emergency-Disaster Wear) aims at developing smart garments able to monitor physiological and environmental parameters of emergency operators. The goal is to realize a wearable system detecting health state parameters of the users (heart rate, breathing rate, body temperature, blood oxygen saturation, position, activity and posture) and environmental variables (external temperature, presence of toxic gases and heat flux passing through the garments) and remotely transmitting useful information to the operation manager.

View Article and Find Full Text PDF

In this paper we propose a new method to enhance prosthetics functionality, that integrates concepts extracted from the neuroscience background with the technology mainly exploited in prosthetic control. This new method allows controlling multi-degrees of freedom (d.o.

View Article and Find Full Text PDF

The first generation of ProeTEX prototypes has been completed at the end of August 2007. In the following period two main activities have involved the project partners. On one hand new technologies (in terms of sensors and devices) to be integrated in the next releases of prototypes have been developed; on the other hand intensive test sessions on the first prototype (both in laboratory conditions and simulating real operative scenarios) have been carried out.

View Article and Find Full Text PDF

The fossil record of early hominids suggests that their Arm length, and presumably stature and weight, had a tendency to increase. Using the minimum jerk principle and a related formulation of averaged specific power, ASP, with regard to selected two-joint Arm movements, the current paper explores relationships between ASP, hand trajectory length (or Arm length, or body mass) and mean movement speed, deriving relationships which indicate that ASP is proportional to cubic mean movement speed, but inversely proportional to hand trajectory length (or Arm length, or 1/3 power of body mass). Accordingly, an ;ecological niche' is modeled in a three-parameter space.

View Article and Find Full Text PDF

People tend to make straight and smooth hand movements when reaching for an object. These trajectory features are resistant to perturbation, and both proprioceptive as well as visual feedback may guide the adaptive updating of motor commands enforcing this regularity. How is information from the two senses combined to generate a coherent internal representation of how the arm moves? Here we show that eliminating visual feedback of hand-path deviations from the straight-line reach (constraining visual feedback of motion within a virtual, "visual channel") prevents compensation of initial direction errors induced by perturbations.

View Article and Find Full Text PDF