The transcription factor GATA2 has a pivotal role in haematopoiesis. Heterozygous germline GATA2 mutations result in a syndrome characterized by immunodeficiency, bone marrow failure and predispositions to myelodysplastic syndrome (MDS) and acute myeloid leukaemia. Clinical symptoms in these patients are diverse and mechanisms driving GATA2-related phenotypes are largely unknown.
View Article and Find Full Text PDFSingle-cell genomics provide researchers with tools to assess host-pathogen interactions at a resolution previously inaccessible. Transcriptome analysis, epigenome analysis, and immune profiling techniques allow for a better comprehension of the heterogeneity underlying both the host response and infectious agents. Here, we highlight technological advancements and data analysis workflows that increase our understanding of host-pathogen interactions at the single-cell level.
View Article and Find Full Text PDFThe first hematopoietic stem cells (HSCs) are formed through endothelial-to-hematopoietic transition (EHT) during embryonic development. The transcription factor GATA2 is a crucial regulator of EHT and HSC function throughout life. Because patients with GATA2 haploinsufficiency have inborn mutations, prenatal defects are likely to influence disease development.
View Article and Find Full Text PDFThe differentiation of hematopoietic stem cells (HSCs) is tightly controlled to ensure a proper balance between myeloid and lymphoid cell output. GATA2 is a pivotal hematopoietic transcription factor required for generation and maintenance of HSCs. GATA2 is expressed throughout development, but because of early embryonic lethality in mice, its role during adult hematopoiesis is incompletely understood.
View Article and Find Full Text PDF