Publications by authors named "Emanuele G Cauda"

Field-based methods for the analysis of respirable crystalline silica are now possible with the availability of portable instrumentation. Such methods also require the use of cassettes that facilitate direct-on-filter analysis of field samples. Conventional sampling cassettes can be modified such that they are amenable to direct-on-filter analysis while remaining compatible with common respirable dust samplers.

View Article and Find Full Text PDF

Respirable dust can pass beyond ciliated airways of the respiratory tract and influence adverse health effects. Health effects can be studied using samples generated from bulk dust segregation. Because previous segregation methods diverge from size-selection criteria of the international convention for respirable particles (ICRP), a method was developed to approximate the ICRP.

View Article and Find Full Text PDF

Exposure to respirable crystalline silica (RCS) can cause serious and irreparable negative health effects, including silicosis and lung cancer. Workers in coal mines have the potential of being exposed to RCS found in dust generated by various mining processes. The silica content of respirable dust in one single mine can vary substantially over both time and location.

View Article and Find Full Text PDF

Video techniques for monitoring exposure, such as NIOSH's "Helmet-CAM," employ both real-time dust monitors and mobile video cameras to assess workers' respirable dust exposures. Many real-time personally worn dust monitors utilize light scattering sensing elements, which are subject to measurement biases as a function of dust type (size, composition, shape factor) and environmental conditions such as relative humidity. These biased and inaccurate dust measurements impair the monitor's ability to properly represent actual respirable dust concentrations.

View Article and Find Full Text PDF

A person-wearable dust monitor that provides nearly real-time, mass-based readings of respirable dust was developed for use in underground coal mines. This personal dust monitor (PDM) combined dust sampling instrumentation with a cap lamp (and battery) into one belt-wearable unit, with the air inlet mounted on the cap lamp. However, obsolescence of belt-carried cap lamp and batteries in coal mining ensued and led end users to request that the cap lamp and battery be removed from the PDM.

View Article and Find Full Text PDF

Dust containing crystalline silica is common in mining environments in the U.S. and around the world.

View Article and Find Full Text PDF

Background: Occupational exposure to crystalline silica is a well-established occupational hazard. Once in the lung, crystalline silica particles can result in the activation of alveolar macrophages (AM), potentially leading to silicosis, a fibrotic lung disease. Because the activation of alveolar macrophages is the beginning step in a complicated inflammatory cascade, it is necessary to define the particle characteristics resulting in this activation.

View Article and Find Full Text PDF

In order to help reduce silicosis in miners, the National Institute for Occupational Health and Safety (NIOSH) is developing field-portable methods for measuring airborne respirable crystalline silica (RCS), specifically the polymorph α-quartz, in mine dusts. In this study we demonstrate the feasibility of end-of-shift measurement of α-quartz using a direct-on-filter (DoF) method to analyze coal mine dust samples deposited onto polyvinyl chloride filters. The DoF method is potentially amenable for on-site analyses, but deviates from the current regulatory determination of RCS for coal mines by eliminating two sample preparation steps: ashing the sampling filter and redepositing the ash prior to quantification by Fourier transform infrared (FT-IR) spectrometry.

View Article and Find Full Text PDF

A series of laboratory tests were conducted to assess the effects of Fe-containing fuel additives on aerosols emitted by a diesel engine retrofitted with a sintered metal filter (SMF) system. Emission measurements performed upstream and downstream of the SMF system were compared, for cases when the engine was fueled with neat ultralow sulfur diesel (ULSD) and with ULSD treated with two formulations of additives containing Fe-based catalysts. The effects were assessed for four steady-state engine operating conditions and one transient cycle.

View Article and Find Full Text PDF

The inhalation of toxic substances is a major threat to the health of miners, and dust containing respirable crystalline silica (α-quartz) is of particular concern, due to the recent rise in cases of coal workers' pneumoconiosis and silicosis in some U.S. mining regions.

View Article and Find Full Text PDF

The contribution of heavy-duty haulage trucks to the concentrations of aerosols and criteria gases in underground mine air and the physical properties of those aerosols were assessed for three fuel blends made with fatty acid methyl esters biodiesel and petroleum-based ultra-low-sulfur diesel (ULSD). The contributions of blends with 20, 50, and 57% of biodiesel as well as neat ULSD were assessed using a 30-ton truck operated over a simulated production cycle in an isolated zone of an operating underground metal mine. When fueled with the B20 (blend of biodiesel with ULSD with 20% of biodiesel content), B50 (blend of biodiesel with ULSD with 50% of biodiesel content), and B57 (blend of biodiesel with ULSD with 57% of biodiesel content) blends in place of ULSD, the truck's contribution to mass concentrations of elemental and total carbon was reduced by 20, 50, and 61%, respectively.

View Article and Find Full Text PDF

In this study a serial multi-cyclone sampling array capable of simultaneously sampling particles of multiple size fractions, from an occupational environment, for use in in vivo and in vitro toxicity studies and physical/chemical characterization, was developed and tested. This method is an improvement over current methods used to size-segregate occupational aerosols for characterization, due to its simplicity and its ability to collect sufficient masses of nano- and ultrafine sized particles for analysis. This method was evaluated in a chamber providing a uniform atmosphere of dust concentrations using crystalline silica particles.

View Article and Find Full Text PDF

Miners are exposed to silica-bearing dust which can lead to silicosis, a potentially fatal lung disease. Currently, airborne silica is measured by collecting filter samples and sending them to a laboratory for analysis. Since this may take weeks, a field method is needed to inform decisions aimed at reducing exposures.

View Article and Find Full Text PDF

The extensive use of diesel-powered equipment in mines makes the exposure to diesel aerosols a serious occupational issue. The exposure metric currently used in U.S.

View Article and Find Full Text PDF

Using biodiesel in place of petroleum diesel is considered by several underground metal and nonmetal mine operators to be a viable strategy for reducing the exposure of miners to diesel particulate matter. This study was conducted in an underground experimental mine to evaluate the effects of soy methyl ester biodiesel on the concentrations and size distributions of diesel aerosols and nitric oxides in mine air. The objective was to compare the effects of neat and blended biodiesel fuels with those of ultralow sulfur petroleum diesel.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionsa4mpqeakaiklui9b2aspps4pfrl8rb6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once