Publications by authors named "Emanuele Fabbiani"

Machine learning (ML) algorithms have been used to forecast clinical outcomes or drug adverse effects by analyzing different data sets such as electronic health records, diagnostic data, and molecular data. However, ML implementation in phase I clinical trial is still an unexplored strategy that implies challenges such as the selection of the best development strategy when dealing with limited sample size. In the attempt to better define prechemotherapy baseline clinical and biomolecular predictors of drug toxicity, we trained and compared five ML algorithms starting from clinical, blood biochemistry, and genotype data derived from a previous phase Ib study aimed to define the maximum tolerated dose of irinotecan (FOLFIRI (folinic acid, fluorouracil, and irinotecan) plus bevacizumab regimen) in patients with metastatic colorectal cancer.

View Article and Find Full Text PDF

Gliomas are the most common primary neoplasm of the central nervous system. A promising frontier in the definition of glioma prognosis and treatment is represented by epigenetics. Furthermore, in this study, we developed a machine learning classification model based on epigenetic data (CpG probes) to separate patients according to their state of immunosuppression.

View Article and Find Full Text PDF