Publications by authors named "Emanuela Talarico"

Environmental stress significantly affects plant growth, development, and survival. Plants respond to stressors such as temperature fluctuations, water scarcity, nutrient deficiencies, and pathogen attacks through intricate molecular and physiological adaptations. Epigenetic mechanisms are crucial in regulating gene expression in response to environmental stress.

View Article and Find Full Text PDF

In gymnosperms such as Ginkgo biloba, the arrival of pollen plays a key role in ovule development, before fertilization occurs. Accordingly, G. biloba female plants geographically isolated from male plants abort all their ovules after the pollination drop emission, which is the event that allows the ovule to capture pollen grains.

View Article and Find Full Text PDF

Cadmium (Cd), one of the most widespread and water-soluble polluting heavy metals, has been widely studied on plants, even if the mechanisms underlying its phytotoxicity remain elusive. Indeed, most experiments are performed using extensive exposure time to the toxicants, not observing the primary targets affected. The present work studied Cd effects on Arabidopsis thaliana (L.

View Article and Find Full Text PDF

-Cinnamic acid is a phenolic compound widely studied in plant metabolism due to its importance in regulating different plant processes. Previous studies on maize plants showed that this compound could affect plant growth and causes metabolic changes in the leaves when applied. However, its effects on root metabolism are not well known.

View Article and Find Full Text PDF

Cadmium (Cd) is one of the most widespread polluting heavy metals in both terrestrial and aquatic environments and represents an extremely significant pollutant causing severe environmental and social problems due to its high toxicity and large solubility in water. In plants, the root is the first organ that get in contact with Cd. It is absorbed by the root system and translocated to the shoot and leaves through xylem loading, causing a variety of genetic, biochemical, and physiological damages.

View Article and Find Full Text PDF

Coumarin is a phytotoxic natural compound able to affect plant growth and development. Previous studies have demonstrated that this molecule at low concentrations (100 µM) can reduce primary root growth and stimulate lateral root formation, suggesting an auxin-like activity. In the present study, we evaluated coumarin's effects (used at lateral root-stimulating concentrations) on the root apical meristem and polar auxin transport to identify its potential mode of action through a confocal microscopy approach.

View Article and Find Full Text PDF

DNA methylation plays an important role in modulating plant growth plasticity in response to stress, but mechanisms involved in such control need further investigation. We used drm1 drm2 cmt3 mutant of Arabidopsis thaliana, defective in DNA methylation, to explore metabolic pathways downstream epigenetic modulation under cadmium (Cd) stress. To this aim, a transcriptomic analysis was performed on ddc and WT plants exposed to a long-lasting (21 d) Cd treatment (25/50 µM), focusing on hormone genetic pathways.

View Article and Find Full Text PDF