The world emits over 14 gigatons of CO in excess of what can be remediated by natural processes annually, contributing to rising atmospheric CO levels and increasing global temperatures. The electrochemical reduction of CO (CO RR) to value-added chemicals and fuels has been proposed as a method for reusing these excess anthropogenic emissions. While state-of-the-art CO RR systems exhibit high current densities and faradaic efficiencies, research on long-term electrode durability, necessary for this technology to be implemented commercially, is lacking.
View Article and Find Full Text PDFThe design of a synthesis strategy for metal nanoparticles by templating dense microemulsions is proposed. Particle size is controlled by surfactant size rather than by microemulsion composition. The strategy was demonstrated with various systems with different surfactant: cationic, anionic and non-ionic and of different sizes.
View Article and Find Full Text PDFWe demonstrate that for high yield wet synthesis of monodispersed nanoparticles high surfactant content bicontinuous microemulsions offer an advantageous template as particle size is limited by the embedding matrix whereas particle aggregation is largely prohibited by its structure. We synthesized platinum nanoparticles varying the reaction rate, metal precursor and reducing agent type and concentration, and the composition of the microemulsion in water content and oil type. High yields of up to 0.
View Article and Find Full Text PDF