Mol Cytogenet
January 2020
Background: Clonal chromosome changes are often found in the bone marrow (BM) of patients with Shwachman-Diamond syndrome (SDS). The most frequent ones include an isochromosome of the long arm of chromosome 7, i (7)(q10), and an interstitial deletion of the long arm of chromosome 20, del (20)(q). These two imbalances are mechanisms of somatic genetic rescue.
View Article and Find Full Text PDFObjectives: Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive disorder. Its predominant manifestations include exocrine pancreatic insufficiency, bone marrow failure and skeletal abnormalities. Patients frequently present failure to thrive and susceptibility to short stature.
View Article and Find Full Text PDFIn Shwachman-Diamond syndrome (SDS), deletion of the long arm of chromosome 20, del(20)(q), often acquired in bone marrow (BM), may imply a lower risk of developing myelodysplastic syndrome/acute myeloid leukaemia (MDS/AML), due to the loss of the EIF6 gene. The genes L3MBTL1 and SGK2, also on chromosome 20, are in a cluster of imprinted genes, and their loss implies dysregulation of BM function. We report here the results of array comparative genomic hybridization (a-CGH) performed on BM DNA of six patients which confirmed the consistent loss of EIF6 gene.
View Article and Find Full Text PDFChronic Myeloid Leukemia (CML) is a stem cell cancer that arises when t(9;22) translocation occurs in a hematopoietic stem cells. This event results in the expression of the BCR-ABL1 fusion gene, which codes for a constitutively active tyrosine kinase that is responsible for the transformation of a HSC into a CML stem cell, which then gives rise to a clonal myeloproliferative disease. The introduction of Tyrosine Kinase Inhibitors (TKIs) has revolutionized the management of the disease.
View Article and Find Full Text PDFPotential bias introduced during DNA isolation is inadequately explored, although it could have significant impact on downstream analysis. To investigate this in human brain, we isolated DNA from cerebellum and frontal cortex using spin columns under different conditions, and salting-out. We first analysed DNA using array CGH, which revealed a striking wave pattern suggesting primarily GC-rich cerebellar losses, even against matched frontal cortex DNA, with a similar pattern on a SNP array.
View Article and Find Full Text PDFBackground: Two chromosome anomalies are frequent in the bone marrow (BM) of patients with Shwachman-Diamond syndrome (SDS): an isochromosome of the long arm of chromosome 7, i(7)(q10), and an interstitial deletion of the long arm of chromosome 20, del(20)(q). These anomalies are associated with a lower risk of developing myelodysplasia (MDS) and/or acute myeloid leukemia. The chromosome anomalies may be due to an SDS-specific karyotype instability, reflected also by anomalies that are not clonal, but found in single cells in the BM or in peripheral blood (PB).
View Article and Find Full Text PDFShwachman-Diamond syndrome (SDS) (OMIM 260400) is a rare autosomal recessive disease characterized by exocrine pancreatic insufficiency, skeletal, and hematological abnormalities and bone marrow (BM) dysfunction. Mutations in the SBDS gene cause SDS. Clonal chromosome anomalies are often present in BM, i(7)(q10) and del(20q) being the most frequent ones.
View Article and Find Full Text PDFThe HeLa cell line is one of the most popular cell lines in biomedical research, despite its well-known chromosomal instability. We compared the genomic and transcriptomic profiles of 4 different HeLa batches and showed that the gain and loss of genomic material varies widely between batches, drastically affecting basal gene expression. Moreover, different pathways were activated in response to a hypoxic stimulus.
View Article and Find Full Text PDFFanconi anaemia (FA) is an inherited disorder characterized by pancytopenia, congenital malformations and a predisposition to develop malignancies. Alterations in the haematopoietic microenvironment of FA patients have been reported, but little is known regarding the components of their bone marrow (BM) stroma. We characterized mesenchymal stromal cells (MSCs) isolated from BM of 18 FA patients both before and after allogeneic haematopoietic stem cell transplantation (HSCT).
View Article and Find Full Text PDFWe analyzed the results of periodic chromosome analyses performed on bone marrow of 22 patients with Shwachman-Diamond syndrome (SDS), 8 directly observed and 14 from the literature, selected because of changes in the cytogenetic picture during the course of the disease. This study points out some features of the cytogenetic evolution in SDS relevant for prognostic evaluation but never noted in the literature. In particular, the lack of any clonal progression and the frequent appearance of independent clones with chromosomal changes different from the one initially discovered, with possible severe prognostic implications, are reported.
View Article and Find Full Text PDFBackground: An interstitial deletion of the long arms of chromosome 20, del(20)(q), is frequent in the bone marrow (BM) of patients with myelodysplastic syndromes (MDS), acute myeloid leukemia (AML), and myeloproliferative neoplasms (MPN), and it is recurrent in the BM of patients with Shwachman-Diamond syndrome (SDS), who have a 30-40% risk of developing MDS and AML.
Results: We report the results obtained by microarray-based comparative genomic hybridization (a-CGH) in six patients with SDS, and we compare the loss of chromosome 20 material with one patient with MDS, and with data on 92 informative patients with MDS/AML/MPN and del(20)(q) collected from the literature.
Conclusions: The chromosome material lost in MDS/AML/MPN is highly variable with no identifiable common deleted regions, whereas in SDS the loss is more uniform: in 3/6 patients it was almost identical, and the breakpoints that we defined are probably common to most patients from the literature.
Background: Chromosome changes in the bone marrow (BM) of patients with persistent cytopenia are often considered diagnostic for a myelodysplastic syndrome (MDS). Comprehensive cytogenetic evaluations may give evidence of the real pathogenetic role of these changes in cases with cytopenia without morphological signs of MDS.
Results: Chromosome anomalies were found in the BM of three patients, without any morphological evidence of MDS: 1) an acquired complex rearrangement of chromosome 21 in a boy with severe aplastic anaemia (SAA); the rearrangement caused the loss of exons 2-8 of the RUNX1 gene with subsequent hypoexpression.
Human malignant autosomal recessive osteopetrosis (ARO) is a genetically heterogeneous disorder caused by reduced bone resorption by osteoclasts. Mutations in the CLCN7 gene are responsible not only for a substantial portion of ARO patients but also for other forms of osteopetrosis characterized by different severity and inheritance. The lack of a clear genotype/phenotype correlation makes genetic counseling a tricky issue for CLCN7-dependent osteopetrosis.
View Article and Find Full Text PDFIntroduction: The thrombocytopenia of the Paris-Trousseau (TCPT) type is a contiguous gene syndrome characterized by mild bleeding tendency, variable thrombocytopenia (THC), abnormal giant alpha-granules in platelets and dysmegakaryopoiesis: it derives from a constitutional deletion of chromosome 11 leading to the loss of FLI1, a transcription factor involved in megakaryocyte differentiation and maturation.
Case Report: A women with an acquired, isolated THC developing over 10 yr showed morphological features typical of TCPT in platelets and bone marrow (BM). Twenty years after the onset of THC, the other hematological parameters are still normal and the patient is well.
The incidence of therapy-related myelodysplastic syndrome (t-MDS) in pediatric patients is increasing in parallel with the more successful management of the primary tumor, but scant information is available on clinical and cytogenetic characteristics. We report here two children affected by t-MDS after chemo/radiotherapy for a primary solid tumor, both with an unbalanced translocation 1/6 in their bone marrow. Characterization by array comparative genomic hybridization of the imbalances showed an almost identical pattern: almost complete trisomy of the long arm of chromosome 1, and a terminal deletion and interstitial duplication of the short arm of chromosome 6.
View Article and Find Full Text PDFJuvenile myelomonocytic leukemia (JMML) is a rare myelodysplastic/myeloproliferative disorder of early childhood characterized by mutations of the RAS-RAF-MAP kinase signaling pathway. We report the case of a child with a diagnosis of JMML carrying two mutations of NRAS gene (c.37G>C and c.
View Article and Find Full Text PDFIn this study, we used deletions at 22q13, which represent a substantial source of human pathology (Phelan/McDermid syndrome), as a model for investigating the molecular mechanisms of terminal deletions that are currently poorly understood. We characterized at the molecular level the genomic rearrangement in 44 unrelated patients with 22q13 monosomy resulting from simple terminal deletions (72%), ring chromosomes (14%), and unbalanced translocations (7%). We also discovered interstitial deletions between 17-74 kb in 9% of the patients.
View Article and Find Full Text PDFBackground: The results of cytogenetic investigations on unbalanced chromosome anomalies, both constitutional and acquired, were largely improved by comparative genomic hybridization on microarray (a-CGH), but in mosaicism the ability of a-CGH to reliably detect imbalances is not yet well established. This problem of sensitivity is even more relevant in acquired mosaicism in neoplastic diseases, where cells carrying acquired imbalances coexist with normal cells, in particular when the proportion of abnormal cells may be low.We constructed a synthetic mosaicism by mixing the DNA of three patients carrying altogether seven chromosome imbalances with normal sex-matched DNA.
View Article and Find Full Text PDFArray-based comparative genomic hybridization (aCGH) has proven indispensable to the study of unbalanced constitutional and acquired chromosomal anomalies, but its sensitivity for detecting mosaicism is still not well established. On the basis of the ADM2 algorithm used for microarray image analysis with one of the most widely used oligomer-based aCGH platforms [the whole genome 244K system by Agilent Technologies (Santa Clara, CA)] we suggest a formula to infer the percentage of cells bearing a chromosome imbalance in cases with constitutional or acquired mosaicism. Three examples of acquired mosaicism in which this formula was applied are reported together with parallel fluorescence in situ hybridization (FISH) to interphase nuclei with informative probes.
View Article and Find Full Text PDFAn investigation of 22 new patients with Shwachman-Diamond syndrome (SDS) and the follow-up of 14 previously reported cases showed that (i) clonal chromosome changes of chromosomes 7 and 20 were present in the bone marrow (BM) of 16 out of 36 cases, but if non-clonal changes were taken into account, the frequency of anomalies affecting these chromosomes was 20/36: a specific SDS karyotype instability was thus confirmed; (ii) the recurrent isochromosome i(7)(q10) did not include short arm material, whereas it retained two arrays of D7Z1 alphoid sequences; (iii) the deletion del(20)(q11) involved the minimal region of deletion typical of myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML); (iv) only one patient developed MDS, during the rapid expansion of a BM clone with a chromosome 7 carrying additional material on the short arms; (v) the acquisition of BM clonal chromosome anomalies was age-related. We conclude that karyotype instability is part of the natural history of SDS through a specific mutator effect, linked to lacking SBDS protein, with consequent clonal anomalies of chromosomes 7 and 20 in BM, which may eventually promote MDS/AML with the patients' ageing.
View Article and Find Full Text PDF