Publications by authors named "Emanuela Dylgjeri"

Article Synopsis
  • Prostate cancer (PCa) is a leading cause of cancer deaths among men in the U.S., with metastatic forms (castration-resistant prostate cancer or CRPC) being particularly deadly and resistant to traditional therapies.
  • Recent studies show that Vitamin C (ascorbate) can selectively kill various cancer cells and may enhance the effectiveness of DNA repair inhibitors, known as PARP inhibitors, against CRPC.
  • Experiments demonstrated that combining ascorbate with PARP inhibitors significantly slowed tumor growth in CRPC models, suggesting a potential new treatment strategy for this aggressive cancer type.
View Article and Find Full Text PDF

Purpose: DNA-dependent protein kinase catalytic subunit (DNA-PKcs, herein referred as DNA-PK) is a multifunctional kinase of high cancer relevance. DNA-PK is deregulated in multiple tumor types, including prostate cancer, and is associated with poor outcomes. DNA-PK was previously nominated as a therapeutic target and DNA-PK inhibitors are currently undergoing clinical investigation.

View Article and Find Full Text PDF

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a pleiotropic protein kinase that plays critical roles in cellular processes fundamental to cancer. DNA-PKcs expression and activity are frequently deregulated in multiple hematologic and solid tumors and have been tightly linked to poor outcome. Given the potentially influential role of DNA-PKcs in cancer development and progression, therapeutic targeting of this kinase is being tested in preclinical and clinical settings.

View Article and Find Full Text PDF

The tumor suppressor gene TP53 is the most frequently mutated gene in numerous cancer types, including prostate cancer (PCa). Specifically, missense mutations in TP53 are selectively enriched in PCa, and cluster to particular "hot spots" in the p53 DNA binding domain with mutation at the R273 residue occurring most frequently. While this residue is similarly mutated to R273C-p53 or R273H-p53 in all cancer types examined, in PCa selective enrichment of R273C-p53 is observed.

View Article and Find Full Text PDF

The retinoblastoma tumor suppressor (RB) is a critical regulator of E2F-dependent transcription, controlling a multitude of protumorigenic networks including but not limited to cell-cycle control. Here, genome-wide assessment of E2F1 function after RB loss in isogenic models of prostate cancer revealed unexpected repositioning and cooperation with oncogenic transcription factors, including the major driver of disease progression, the androgen receptor (AR). Further investigation revealed that observed AR/E2F1 cooperation elicited novel transcriptional networks that promote cancer phenotypes, especially as related to evasion of cell death.

View Article and Find Full Text PDF

Loss of the retinoblastoma (RB) tumor suppressor protein is a critical step in reprogramming biological networks that drive cancer progression, although mechanistic insight has been largely limited to the impact of RB loss on cell-cycle regulation. Here, isogenic modeling of RB loss identified disease stage-specific rewiring of E2F1 function, providing the first-in-field mapping of the E2F1 cistrome and transcriptome after RB loss across disease progression. Biochemical and functional assessment using both and models identified an unexpected, prominent role for E2F1 in regulation of redox metabolism after RB loss, driving an increase in the synthesis of the antioxidant glutathione, specific to advanced disease.

View Article and Find Full Text PDF

Mechanisms regulating DNA repair processes remain incompletely defined. Here, the circadian factor CRY1, an evolutionally conserved transcriptional coregulator, is identified as a tumor specific regulator of DNA repair. Key findings demonstrate that CRY1 expression is androgen-responsive and associates with poor outcome in prostate cancer.

View Article and Find Full Text PDF

Emerging evidence indicates the deubiquitinase USP22 regulates transcriptional activation and modification of target substrates to promote pro-oncogenic phenotypes. Here, characterization of tumor-associated USP22 upregulation and unbiased interrogation of USP22-regulated functions demonstrated critical roles for USP22 in prostate cancer. Specifically, clinical datasets validated that USP22 expression is elevated in prostate cancer, and a novel murine model demonstrated a hyperproliferative phenotype with prostate-specific USP22 overexpression.

View Article and Find Full Text PDF

Purpose: DNA-dependent protein kinase catalytic subunit (DNA-PK) is a pleiotropic kinase involved in DNA repair and transcriptional regulation. DNA-PK is deregulated in selected cancer types and is strongly associated with poor outcome. The underlying mechanisms by which DNA-PK promotes aggressive tumor phenotypes are not well understood.

View Article and Find Full Text PDF

Purpose: Protein kinases are known to play a prominent role in oncogenic progression across multiple cancer subtypes, yet their role in prostate cancer progression remains underexplored. The purpose of this study was to identify kinases that drive prostate cancer progression. To discover kinases that drive prostate cancer progression, we investigated the association between gene expression of all known kinases and long-term clinical outcomes in tumor samples from 545 patients with high-risk disease.

View Article and Find Full Text PDF

Background: Androgen deprivation therapy is a first-line treatment for disseminated prostate cancer (PCa). However, virtually all tumors become resistant and recur as castration-resistant PCa, which has no durable cure. One major hurdle in the development of more effective therapies is the lack of preclinical models that adequately recapitulate the heterogeneity of PCa, significantly hindering the ability to accurately predict therapeutic response.

View Article and Find Full Text PDF

PARP-1 holds major functions on chromatin, DNA damage repair and transcriptional regulation, both of which are relevant in the context of cancer. Here, unbiased transcriptional profiling revealed the downstream transcriptional profile of PARP-1 enzymatic activity. Further investigation of the PARP-1-regulated transcriptome and secondary strategies for assessing PARP-1 activity in patient tissues revealed that PARP-1 activity was unexpectedly enriched as a function of disease progression and was associated with poor outcome independent of DNA double-strand breaks, suggesting that enhanced PARP-1 activity may promote aggressive phenotypes.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDA) is a lethal disease, in part, because of the lack of effective targeted therapeutic options. MK-1775 (also known as AZD1775), a mitotic inhibitor, has been demonstrated to enhance the anti-tumor effects of DNA damaging agents such as gemcitabine. We evaluated the efficacy of MK-1775 alone or in combination with DNA damaging agents (MMC or oxaliplatin) in PDA cell lines that are either DNA repair proficient (DDR-P) or deficient (DDR-D).

View Article and Find Full Text PDF

Emerging evidence demonstrates that the DNA repair kinase DNA-PKcs exerts divergent roles in transcriptional regulation of unsolved consequence. Here, in vitro and in vivo interrogation demonstrate that DNA-PKcs functions as a selective modulator of transcriptional networks that induce cell migration, invasion, and metastasis. Accordingly, suppression of DNA-PKcs inhibits tumor metastases.

View Article and Find Full Text PDF