Publications by authors named "Emanuela Caci"

Cyclic adenosine 3',5'-monophosphate (cAMP)-elevating agents, such as β-adrenergic receptor (β-AR) agonists and phosphodiesterase (PDE) inhibitors, remain a mainstay in the treatment of obstructive respiratory diseases, conditions characterized by airway constriction, inflammation, and mucus hypersecretion. However, their clinical use is limited by unwanted side effects because of unrestricted cAMP elevation in the airways and in distant organs. Here, we identified the A-kinase anchoring protein phosphoinositide 3-kinase γ (PI3Kγ) as a critical regulator of a discrete cAMP signaling microdomain activated by β-ARs in airway structural and inflammatory cells.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the presence and role of ionocytes, specialized airway cells, in the context of cystic fibrosis (CF) by analyzing nasal and bronchial cells.
  • It was found that the abundance of ionocytes was about 3% in nasal samples, with no significant difference between CF patients and healthy individuals, while bronchi showed very few ionocytes.
  • Both in culture and differentiation phases, CFTR expression varied, but functionality of chloride secretion was consistent, indicating that CFTR expression does not impact chloride ion release.
View Article and Find Full Text PDF

F508del, the most frequent mutation causing cystic fibrosis (CF), results in mistrafficking and premature degradation of the CFTR chloride channel. Small molecules named correctors may rescue F508del-CFTR and therefore represent promising drugs to target the basic defect in CF. We screened a carefully designed chemical library to find F508del-CFTR correctors.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a genetic disease characterized by the lack of cystic fibrosis transmembrane conductance regulator (CFTR) protein expressed in epithelial cells. The resulting defective chloride and bicarbonate secretion and imbalance of the transepithelial homeostasis lead to abnormal airway surface liquid (ASL) composition and properties. The reduced ASL volume impairs ciliary beating with the consequent accumulation of sticky mucus.

View Article and Find Full Text PDF

A novel class of transmembrane anion carriers, the click-tambjamines, display remarkable anionophoric activities in model liposomes and living cells. The versatility of this building block for the generation of molecular diversity offers promise to develop future drugs based on this design.

View Article and Find Full Text PDF

Key Points: Eact is a putative pharmacological activator of TMEM16A. Eact is strongly effective in recombinant Fischer rat thyroid (FRT) cells but not in airway epithelial cells with endogenous TMEM16A expression. Transcriptomic analysis, gene silencing and functional studies in FRT cells reveal that Eact is actually an activator of the Ca -permeable TRPV4 channel.

View Article and Find Full Text PDF

What is the central question of this study? What is the precise subcellular localization of the epithelial sodium channel (ENaC) in human airway epithelium? What is the main finding and its importance? ENaC protein has an unexpected localization in the peripheral region of the apical membrane of bronchial epithelial cells, very close to tight junctions. This may be important for the mechanism of Na absorption ABSTRACT: The epithelial sodium channel (ENaC) has a key role in absorbing fluid across the human airway epithelium. Altered activity of ENaC may perturb the process of mucociliary clearance, thus impairing the innate defence mechanisms against microbial agents.

View Article and Find Full Text PDF

Pharmacological rescue of mutant cystic fibrosis transmembrane conductance regulator (CFTR) in cystic fibrosis (CF) depends on the specific defect caused by different mutation classes. We asked whether a patient with the rare p.Gly970Asp (c.

View Article and Find Full Text PDF

Background And Purpose: Cystic fibrosis (CF) is a lethal autosomal recessive genetic disease that originates from the defective function of the CF transmembrane conductance regulator (CFTR) protein, a cAMP-dependent anion channel involved in fluid transport across epithelium. Because small synthetic transmembrane anion transporters (anionophores) can replace the biological anion transport mechanisms, independent of genetic mutations in the CFTR, such anionophores are candidates as new potential treatments for CF.

Experimental Approach: In order to assess their effects on cell physiology, we have analysed the transport properties of five anionophore compounds, three prodigiosines and two tambjamines.

View Article and Find Full Text PDF

The mutation F508del, responsible for a majority of cystic fibrosis cases, provokes the instability and misfolding of the CFTR chloride channel. Pharmacological recovery of F508del-CFTR may be obtained with small molecules called correctors. However, treatment with a single corrector and only leads to a partial rescue, a consequence of cell quality control systems that still detect F508del-CFTR as a defective protein causing its degradation.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a chronic disease caused by mutations in the CF transmembrane conductance regulator () gene, which encodes for a channel expressed at the apical surface of epithelial tissues. Defective chloride and bicarbonate secretion, arising from CFTR mutations, cause a multi-organ disease. In the airways, impaired ion transport results in a thick mucus, dehydration of the periciliar region and bacterial infections.

View Article and Find Full Text PDF

Background: Label-free proteomics is a powerful tool for biological investigation. The SWATH protocol, relying on the Pan Human ion library, currently represents the state-of-the-art methodology for this kind of analysis. We recently discovered that this tool is not perfectly suitable for proteomics research in the CF field, as it lacks assays for several proteins crucial for the CF biology, including CFTR.

View Article and Find Full Text PDF

Proton secretion mediated by ATP12A protein on the surface of the airway epithelium may contribute to cystic fibrosis (CF) lung disease by favoring bacterial infection and airway obstruction. We studied ATP12A in fresh bronchial samples and in cultured epithelial cells. In vivo, ATP12A expression was found almost exclusively at the apical side of nonciliated cells of airway epithelium and in submucosal glands, with much higher expression in CF samples.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a genetic lethal disease, originated from the defective function of the CFTR protein, a chloride and bicarbonate permeable transmembrane channel. CF mutations affect CFTR protein through a variety of molecular mechanisms which result in different functional defects. Current therapeutic approaches are targeted to specific groups of patients that share a common functional defect.

View Article and Find Full Text PDF

In cystic fibrosis (CF), deletion of phenylalanine 508 (F508del) in the CFTR channel is associated with misfolding and premature degradation of the mutant protein. Among the known proteins associated with F508del-CFTR processing, the ubiquitin ligase RNF5/RMA1 is particularly interesting. We previously demonstrated that genetic suppression of RNF5 in vivo leads to an attenuation of intestinal pathological phenotypes in CF mice, validating the relevance of RNF5 as a drug target for CF.

View Article and Find Full Text PDF

In cystic fibrosis (CF), deletion of phenylalanine 508 (F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel causes misfolding and premature degradation. Considering the numerous effects of the F508del mutation on the assembly and processing of CFTR protein, combination therapy with several pharmacological correctors is likely to be required to treat CF patients. Recently, it has been reported that thymosin α-1 (Tα-1) has multiple beneficial effects that could lead to a single-molecule-based therapy for CF patients with F508del.

View Article and Find Full Text PDF

In cystic fibrosis, deletion of phenylalanine 508 (F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel causes misfolding and premature degradation. One possible approach to reducing the detrimental health effects of cystic fibrosis could be the identification of proteins whose suppression rescues F508del-CFTR function in bronchial epithelial cells. However, searches for these potential targets have not yet been conducted, particularly in a relevant airway background using a functional readout.

View Article and Find Full Text PDF

Autosomal recessive osteopetrosis (ARO) is a severe bone disease characterized by increased bone density due to impairment in osteoclast resorptive function or differentiation. Hematopoietic stem cell transplantation is the only available treatment; however, this therapy is not effective in RANKL-dependent ARO, since in bone this gene is mainly expressed by cells of mesenchymal origin. Of note, whether lack of RANKL production might cause a defect also in the bone marrow (BM) stromal compartment, possibly contributing to the pathology, is unknown.

View Article and Find Full Text PDF

Goblet cell hyperplasia, a feature of asthma and other respiratory diseases, is driven by the Th-2 cytokines IL-4 and IL-13. In human bronchial epithelial cells, we find that IL-4 induces the expression of many genes coding for ion channels and transporters, including TMEM16A, SLC26A4, SLC12A2, and ATP12A. At the functional level, we find that IL-4 enhances calcium- and cAMP-activated chloride/bicarbonate secretion, resulting in high bicarbonate concentration and alkaline pH in the fluid covering the apical surface of epithelia.

View Article and Find Full Text PDF

Defective epithelial chloride secretion occurs in humans with cystic fibrosis (CF), a genetic defect due to loss of function of CFTR, a cAMP-activated chloride channel. In the airways, absence of an active CFTR causes a severe lung disease. In mice, genetic ablation of CFTR function does not result in similar lung pathology.

View Article and Find Full Text PDF

Background: Mistrafficking of CFTR protein caused by F508del, the most frequent mutation in cystic fibrosis (CF), can be corrected by cell incubation at low temperature, an effect that may be mediated by altered expression of proteostasis genes.

Methods: To identify small molecules mimicking low temperature, we compared gene expression profiles of cells kept at 27°C with those previously generated from more than 1300 compounds. The resulting candidates were tested with a functional assay on a bronchial epithelial cell line.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) is a progressive lung disorder characterized by poorly reversible airway obstruction and its pathogenesis remains largely misunderstood. Local changes of regulatory T-cell populations in the lungs of COPD patients have been demonstrated although data concerning their pathologic role are contrasting. The aim of our study was to evaluate the relative percentage of regulatory T-cells in the peripheral blood of current and former smoker subjects, affected or not by COPD.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is caused by mutations in the CFTR chloride channel. Deletion of phenylalanine 508 (F508del), the most frequent CF mutation, impairs CFTR trafficking and gating. F508del-CFTR mistrafficking may be corrected by acting directly on mutant CFTR itself or by modulating expression/activity of CFTR-interacting proteins, that may thus represent potential drug targets.

View Article and Find Full Text PDF

Induction of mucus hypersecretion in the airway epithelium by Th2 cytokines is associated with the expression of TMEM16A, a Ca2+-activated Cl- channel. We asked whether exposure of airway epithelial cells to bacterial components, a condition that mimics the highly infected environment occurring in cystic fibrosis (CF), also results in a similar response. In cultured human bronchial epithelial cells, treatment with pyocyanin or with a P.

View Article and Find Full Text PDF