When a radiological and nuclear (R/N) emergency occurs, the categorization of individuals into those who are unaffected and those requiring medical intervention is a high priority. At times, a professional dosimeter is not available and therefore some common belongings may be used as fortuitous dosimeters. The preparation of these objects for the measurement should be such as to give the most accurate and precise results.
View Article and Find Full Text PDFScientific community and institutions (e. g., ICRP) consider that the Linear No-Threshold (LNT) model, which extrapolates stochastic risk at low dose/low dose rate from the risk at moderate/high doses, provides a prudent basis for practical purposes of radiological protection.
View Article and Find Full Text PDFBackground: The Italian National Institute of Health (Istituto Superiore di Sanità, ISS) considers health inequalities (HI) an important area of activity. As the scientific and technical body of the Ministry of Health and the National Health Service, ISS may play a key role to reduce HI. In order to enable ISS in addressing the new and crucial HI challenge, a Research Positioning Exercise was designed and implemented.
View Article and Find Full Text PDFPurpose: A European network was initiated in 2012 by 23 partners from 16 European countries with the aim to significantly increase individualized dose reconstruction in case of large-scale radiological emergency scenarios.
Results: The network was built on three complementary pillars: (1) an operational basis with seven biological and physical dosimetric assays in ready-to-use mode, (2) a basis for education, training and quality assurance, and (3) a basis for further network development regarding new techniques and members. Techniques for individual dose estimation based on biological samples and/or inert personalized devices as mobile phones or smart phones were optimized to support rapid categorization of many potential victims according to the received dose to the blood or personal devices.
Purpose: In the EC-funded project RENEB (Realizing the European Network in Biodosimetry), physical methods applied to fortuitous dosimetric materials are used to complement biological dosimetry, to increase dose assessment capacity for large-scale radiation/nuclear accidents. This paper describes the work performed to implement Optically Stimulated Luminescence (OSL) and Electron Paramagnetic Resonance (EPR) dosimetry techniques.
Materials And Methods: OSL is applied to electronic components and EPR to touch-screen glass from mobile phones.
Int J Radiat Biol
January 2017
Purpose: The RENEB accident exercise was carried out in order to train the RENEB participants in coordinating and managing potentially large data sets that would be generated in case of a major radiological event.
Materials And Methods: Each participant was offered the possibility to activate the network by sending an alerting email about a simulated radiation emergency. The same participant had to collect, compile and report capacity, triage categorization and exposure scenario results obtained from all other participants.
Purpose: To identify and assess, among the participants in the RENEB (Realizing the European Network of Biodosimetry) project, the emergency preparedness, response capabilities and resources that can be deployed in the event of a radiological or nuclear accident/incident affecting a large number of individuals. These capabilities include available biodosimetry techniques, infrastructure, human resources (existing trained staff), financial and organizational resources (including the role of national contact points and their articulation with other stakeholders in emergency response) as well as robust quality control/assurance systems.
Materials And Methods: A survey was prepared and sent to the RENEB partners in order to acquire information about the existing, operational techniques and infrastructure in the laboratories of the different RENEB countries and to assess the capacity of response in the event of radiological or nuclear accident involving mass casualties.
Purpose: RENEB, 'Realising the European Network of Biodosimetry and Physical Retrospective Dosimetry,' is a network for research and emergency response mutual assistance in biodosimetry within the EU. Within this extremely active network, a number of new dosimetry methods have recently been proposed or developed. There is a requirement to test and/or validate these candidate techniques and inter-comparison exercises are a well-established method for such validation.
View Article and Find Full Text PDFThe increasing risk of a mass casualty scenario following a large scale radiological accident or attack necessitates the development of appropriate dosimetric tools for emergency response. Luminescence dosimetry has been reliably applied for dose reconstruction in contaminated settlements for several decades and recent research into new materials carried close to the human body opens the possibility of estimating individual doses for accident and emergency dosimetry using the same technique. This paper reviews the luminescence research into materials useful for accident dosimetry and applications in retrospective dosimetry.
View Article and Find Full Text PDF