Publications by authors named "Emanuel Giarolla"

Land use change and atmospheric composition, two drivers of climate change, can interact to affect both local and remote climate regimes. Previous works have considered the effects of greenhouse gas buildup in the atmosphere and the effects of Amazon deforestation in atmospheric general circulation models. In this study, we investigate the impacts of the Brazilian Amazon savannization and global warming in a fully coupled ocean-land-sea ice-atmosphere model simulation.

View Article and Find Full Text PDF

This study presents novel insight into the mechanisms of Atlantic Meridional Overturning Circulation (AMOC) reduction and its recovery under a warmer climate scenario. An one-thousand-year-long numerical simulation of a global coupled ocean-ice-atmosphere climate model, subjected to a stationary atmospheric radiative forcing, depict a coherent picture of the Arctic sea ice melting as a trigger for the initial AMOC reduction, along with decreases in the northward fluxes of salt and heat. Further atmospheric-driven ocean processes contribute to an erosion of the stable stratification of the fresher, yet colder waters in the surface layers of the North Atlantic, contributing to the recovery of a permanently altered AMOC.

View Article and Find Full Text PDF

During the last quarter of 2019, the beaches, mangroves, and estuaries of Northeast Brazil received an unprecedented volume of crude oil from the sea, which became the worst environmental disaster ever to reach the Brazilian coast. The oil, having reached the shores completely unnoticed, left both society and government agents completely clueless on (i) where the oil was coming from; (ii) how much oil was still in the ocean to reach the shorelines; and (iii) which beaches were going to be affected next! By exploring remote sensing data and ocean numerical modeling, along with oil dispersion chemistry on sea water, this study investigates the possible origin and path of the spill and whether it could have been detected from space. The oil dispersion modeling simulations performed for this investigation revealed a possible region and timing of the oil spill, also indicating the likelihood of it being advected toward the shoreline under the ocean surface.

View Article and Find Full Text PDF