Publications by authors named "Emanuel C Mora"

Recent cross-cultural and neuro-hormonal investigations have suggested that love is a near universal phenomenon that has a biological background. Therefore, the remaining important question is not whether love exists worldwide but which cultural, social, or environmental factors influence experiences and expressions of love. In the present study, we explored whether countries' modernization indexes are related to love experiences measured by three subscales (passion, intimacy, commitment) of the Triangular Love Scale.

View Article and Find Full Text PDF

Height preferences reflecting positive assortative mating for height-wherein an individual's own height positively predicts the preferred height of their mate-have been observed in several distinct human populations and are thought to increase reproductive fitness. However, the extent to which assortative preferences for height differ strategically for short-term versus long-term relationship partners, as they do for numerous other indices of mate quality, remains unclear. We explore this possibility in a large representative sample of over 500 men and women aged 15-77 from Canada, Cuba, Norway and the United States.

View Article and Find Full Text PDF

A wide range of literature connects sex ratio and mating behaviours in non-human animals. However, research examining sex ratio and human mating is limited in scope. Prior work has examined the relationship between sex ratio and desire for short-term, uncommitted mating as well as outcomes such as marriage and divorce rates.

View Article and Find Full Text PDF

Interpersonal touch behavior differs across cultures, yet no study to date has systematically tested for cultural variation in affective touch, nor examined the factors that might account for this variability. Here, over 14,000 individuals from 45 countries were asked whether they embraced, stroked, kissed, or hugged their partner, friends, and youngest child during the week preceding the study. We then examined a range of hypothesized individual-level factors (sex, age, parasitic history, conservatism, religiosity, and preferred interpersonal distance) and cultural-level factors (regional temperature, parasite stress, regional conservatism, collectivism, and religiosity) in predicting these affective-touching behaviors.

View Article and Find Full Text PDF

The Triangular Theory of Love (measured with Sternberg's Triangular Love Scale - STLS) is a prominent theoretical concept in empirical research on love. To expand the culturally homogeneous body of previous psychometric research regarding the STLS, we conducted a large-scale cross-cultural study with the use of this scale. In total, we examined more than 11,000 respondents, but as a result of applied exclusion criteria, the final analyses were based on a sample of 7332 participants from 25 countries (from all inhabited continents).

View Article and Find Full Text PDF

Considerable research has examined human mate preferences across cultures, finding universal sex differences in preferences for attractiveness and resources as well as sources of systematic cultural variation. Two competing perspectives-an evolutionary psychological perspective and a biosocial role perspective-offer alternative explanations for these findings. However, the original data on which each perspective relies are decades old, and the literature is fraught with conflicting methods, analyses, results, and conclusions.

View Article and Find Full Text PDF

Humans express a wide array of ideal mate preferences. Around the world, people desire romantic partners who are intelligent, healthy, kind, physically attractive, wealthy, and more. In order for these ideal preferences to guide the choice of actual romantic partners, human mating psychology must possess a means to integrate information across these many preference dimensions into summaries of the overall mate value of their potential mates.

View Article and Find Full Text PDF

The tympanal ear is an evolutionary acquisition which helps moths survive predation from bats. The greater diversity of bats and echolocation strategies in the Neotropics compared with temperate zones would be expected to impose different sensory requirements on the neotropical moths. However, even given some variability among moth assemblages, the frequencies of best hearing of moths from different climate zones studied to date have been roughly the same: between 20 and 60 kHz.

View Article and Find Full Text PDF

Several mammalian species scale their voice fundamental frequency (F0) and formant frequencies in competitive and mating contexts, reducing vocal tract and laryngeal allometry thereby exaggerating apparent body size. Although humans' rare capacity to volitionally modulate these same frequencies is thought to subserve articulated speech, the potential function of voice frequency modulation in human nonverbal communication remains largely unexplored. Here, the voices of 167 men and women from Canada, Cuba, and Poland were recorded in a baseline condition and while volitionally imitating a physically small and large body size.

View Article and Find Full Text PDF

During echolocation, bats continuously perform audio-motor adjustments to optimize detection efficiency. It has been demonstrated that bats adjust the amplitude of their biosonar vocalizations (known as 'pulses') to stabilize the amplitude of the returning echo. Here, we investigated this echo-level compensation behaviour by swinging mustached bats on a pendulum towards a reflective surface.

View Article and Find Full Text PDF

In certain nocturnal moth species the frequency range of best hearing shifts to higher frequencies during repeated sound stimulation. This could provide the moths with a mechanism to better detect approaching echolocating bats. However, such a dynamic up-tuning would be of little value for day-flying moths that use intra-specific acoustic communication.

View Article and Find Full Text PDF

It has been reported previously that in the inferior colliculus of the bat Molossus molossus, neuronal duration tuning is ambiguous because the tuning type of the neurons dramatically changes with the sound level. In the present study, duration tuning was examined in the auditory cortex of M. molossus to describe if it is as ambiguous as the collicular tuning.

View Article and Find Full Text PDF

Frequency alternation in the echolocation of insectivorous bats has been interpreted in relation to ranging and duty cycle, i.e. advantages for echolocation.

View Article and Find Full Text PDF

In the auditory system, tuning to sound level appears in the form of non-monotonic response-level functions that depict the response of a neuron to changing sound levels. Neurons with non-monotonic response-level functions respond best to a particular sound pressure level (defined as "best level" or level evoking the maximum response). We performed a comparative study on the location and basic functional organization of the auditory cortex in the gleaning bat, Macrotus waterhousii, and the aerial-hawking bat, Molossus molossus.

View Article and Find Full Text PDF

Echolocating bats use the time from biosonar pulse emission to the arrival of echo (defined as echo delay) to calculate the space depth of targets. In the dorsal auditory cortex of several species, neurons that encode increasing echo delays are organized rostrocaudally in a topographic arrangement defined as chronotopy. Precise chronotopy could be important for precise target-distance computations.

View Article and Find Full Text PDF

The mechanical tuning of the ear in the moth Empyreuma pugione was investigated by distortion-product otoacoustic emissions (DPOAE) and laser Doppler vibrometry (LDV). DPOAE audiograms were assessed using a novel protocol that may be advantageous for non-invasive auditory studies in insects. To evoke DPOAE, two-tone stimuli within frequency and level ranges that generated a large matrix of values (960 frequency-level combinations) were used to examine the acoustic space in which the moth tympanum shows its best mechanical and acoustical responses.

View Article and Find Full Text PDF

Echolocating bats use the time elapsed from biosonar pulse emission to the arrival of echo (defined as echo-delay) to assess target-distance. Target-distance is represented in the brain by delay-tuned neurons that are classified as either "heteroharmonic" or "homoharmormic." Heteroharmonic neurons respond more strongly to pulse-echo pairs in which the timing of the pulse is given by the fundamental biosonar harmonic while the timing of echoes is provided by one (or several) of the higher order harmonics.

View Article and Find Full Text PDF

Echolocation in bats requires a precise temporal processing of complex signals. This processing of time includes the encoding of echo-delay, which gives an estimation of target distance, and sound duration, which is considered to be important for own sound or echo recognition. In this study, we report that delay-tuned neurons in the inferior colliculus of the mustached bat (Pteronotus parnellii) are also tuned to sound duration.

View Article and Find Full Text PDF

Delay tuning was studied in the auditory cortex of Pteronotus quadridens. All the 136 delay-tuned units that were studied responded strongly to heteroharmonic pulse-echo pairs presented at specific delays. In the heteroharmonic pairs, the first sonar call harmonic marks the timing of pulse emission while one of the higher harmonics (second or third) indicates the timing of the echo.

View Article and Find Full Text PDF

Neuronal computation of object distance from echo delay is an essential task that echolocating bats must master for spatial orientation and the capture of prey. In the dorsal auditory cortex of bats, neurons specifically respond to combinations of short frequency-modulated components of emitted call and delayed echo. These delay-tuned neurons are thought to serve in target range calculation.

View Article and Find Full Text PDF

One role of the inferior colliculus (IC) in bats is to create neuronal delay-tuning, which is used for the estimation of target distance in the echolocating bat's auditory system. In this study, we describe response properties of IC delay-tuned neurons of the mustached bat (Pteronotus parnellii) and compare it with those of delay-tuned neurons of the auditory cortex (AC). We also address the question if frequency content of the stimulus (pure-tone (PT) or frequency-modulated (FM) pairs stimulation) affects combination-sensitive interaction in the same neuron.

View Article and Find Full Text PDF

We studied duration tuning in neurons of the inferior colliculus (IC) of the mustached bat. Duration-tuned neurons in the IC of the mustached bat fall into three main types: short (16 of 136), band (34 of 136), and long (29 of 136) pass. The remaining 51 neurons showed no selectivity for the duration of sounds.

View Article and Find Full Text PDF

Frequency tuning, temporal response pattern and latency properties of inferior colliculus neurons were investigated in the big fruit-eating bat, Artibeus jamaicensis. Neurons having best frequencies between 48-72 kHz and between 24-32 kHz are overrepresented. The inferior colliculus neurons had either phasic (consisting in only one response cycle at all stimulus intensities) or long-lasting oscillatory responses (consisting of multiple response cycles).

View Article and Find Full Text PDF