Publications by authors named "Eman Meky"

Topologically associating domain (TAD) boundaries partition the genome into distinct regulatory territories. Anecdotal evidence suggests that their disruption may interfere with normal gene expression and cause disease phenotypes, but the overall extent to which this occurs remains unknown. Here we demonstrate that targeted deletions of TAD boundaries cause a range of disruptions to normal in vivo genome function and organismal development.

View Article and Find Full Text PDF

Embryonic morphogenesis is strictly dependent on tight spatiotemporal control of developmental gene expression, which is typically achieved through the concerted activity of multiple enhancers driving cell type-specific expression of a target gene. Mammalian genomes are organized in topologically associated domains, providing a preferred environment and framework for interactions between transcriptional enhancers and gene promoters. While epigenomic profiling and three-dimensional chromatin conformation capture have significantly increased the accuracy of identifying enhancers, assessment of subregional enhancer activities via transgenic reporter assays in mice remains the gold standard for assigning enhancer activity in vivo.

View Article and Find Full Text PDF

Ultraconserved enhancer sequences show perfect conservation between human and rodent genomes, suggesting that their functions are highly sensitive to mutation. However, current models of enhancer function do not sufficiently explain this extreme evolutionary constraint. We subjected 23 ultraconserved enhancers to different levels of mutagenesis, collectively introducing 1,547 mutations, and examined their activities in transgenic mouse reporter assays.

View Article and Find Full Text PDF

Fowler syndrome is a rare autosomal recessive brain vascular disorder caused by mutation in FLVCR2 in humans. The disease occurs during a critical period of brain vascular development, is characterized by glomeruloid vasculopathy and hydrocephalus, and is almost invariably prenatally fatal. Here, we sought to gain insights into the process of brain vascularization and the pathogenesis of Fowler syndrome by inactivating Flvcr2 in mice.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers created a mouse reporter assay to study the effects of human enhancer variants linked to polydactyly, examining nearly a thousand variants.
  • They found that 71% of rare non-coding variants thought to be causal resulted in gene expression patterns consistent with causing the condition.
  • The study also identified additional functional mutations and established a method for evaluating the pathogenic potential of human enhancer variants in vivo, potentially helping understand genetic causes of various phenotypes.
View Article and Find Full Text PDF