(biovar2, race3) is the causal agent of bacterial wilt and this quarantine phytopathogen is responsible for massive losses in several commercially important crops. Biological control of this pathogen might become a suitable plant protection measure in areas where is endemic. Two bacterial strains, (B63) and (P142) with antagonistic activity toward (B3B) were tested for rhizosphere competence, efficient biological control of wilt symptoms on greenhouse-grown tomato, and effects on the indigenous rhizosphere prokaryotic communities.
View Article and Find Full Text PDFOn-farm biopurification systems (BPSs) represent an efficient technology for treating pesticide-contaminated wastewater. Biodegradation by genetically adapted bacteria has been suggested to perform a major contribution to the removal of pesticides in BPSs. Recently, several studies pointed to the role of IncP-1 plasmids in the degradation of pesticides in BPSs but this was never linked with catabolic markers.
View Article and Find Full Text PDFOn-farm biopurification systems (BPSs) treat pesticide-contaminated wastewater at farms through biodegradation and sorption processes. However, information on the microbiota involved in pesticide removal in BPSs is scarce. Here we report on the response of BPS bacterial communities to the herbicide linuron (BPS(+)) compared with the control (BPS(-)) in a microcosm experiment.
View Article and Find Full Text PDF