Introduction: The institutions (i.e., hubs) making up the National Institutes of Health (NIH)-funded network of Clinical and Translational Science Awards (CTSAs) share a mission to turn observations into interventions to improve public health.
View Article and Find Full Text PDFPatient satisfaction is an integral aspect of healthcare quality assessment, and it plays a crucial role in evaluating the effectiveness of healthcare services. This systematic review investigates patient satisfaction with dental services provided by public dental hospitals in rural and remote areas of Saudi Arabia. The study conducted a systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) standards.
View Article and Find Full Text PDFCourse-based undergraduate research experiences (CUREs) provide a promising avenue to attract a larger and more diverse group of students into research careers. CUREs are thought to be distinctive in offering students opportunities to make discoveries, collaborate, engage in iterative work, and develop a sense of ownership of their lab course work. Yet how these elements affect students' intentions to pursue research-related careers remain unexplored.
View Article and Find Full Text PDFIt is becoming increasingly important to differentiate complex mixtures, especially in forensics. Cachaça, the most popular alcoholic beverage in Brazil, is made from distilled and fermented sugar cane juice. It contains a mixture of naturally occurring polyphenols known as tannins, whose composition is dictated by the type of wood used to age the beverage.
View Article and Find Full Text PDFDifferential sensing using synthetic receptors as mimics of the mammalian senses of taste and smell is a powerful approach for the analysis of complex mixtures. Herein, we report on the effectiveness of a cross-reactive, supramolecular, peptide-based sensing array in differentiating and predicting the composition of red wine blends. Fifteen blends of Cabernet Sauvignon, Merlot and Cabernet Franc, in addition to the mono varietals, were used in this investigation.
View Article and Find Full Text PDFMobile group II introns encode reverse transcriptases (RTs) that function in intron mobility ("retrohoming") by a process that requires reverse transcription of a highly structured, 2-2.5-kb intron RNA with high processivity and fidelity. Although the latter properties are potentially useful for applications in cDNA synthesis and next-generation RNA sequencing (RNA-seq), group II intron RTs have been difficult to purify free of the intron RNA, and their utility as research tools has not been investigated systematically.
View Article and Find Full Text PDFOrganophosphorus compounds include many synthetic, neurotoxic substances that are commonly used as insecticides. The toxicity of these compounds is due to their ability to inhibit the enzyme acetylcholine esterase. Some of the most toxic organophosphates have been adapted for use as chemical warfare agents; the most well-known are GA, GB, GD, GF, VX, and VR.
View Article and Find Full Text PDFMobile group II introns, which are found in bacterial and organellar genomes, are site-specific retroelements hypothesized to be evolutionary ancestors of spliceosomal introns and retrotransposons in higher organisms. Most bacteria, however, contain no more than one or a few group II introns, making it unclear how introns could have proliferated to higher copy numbers in eukaryotic genomes. An exception is the thermophilic cyanobacterium Thermosynechococcus elongatus, which contains 28 closely related copies of a group II intron, constituting approximately 1.
View Article and Find Full Text PDFGlycerophosphodiesterase (GpdQ) from Enterobacter aerogenes is a nonspecific diesterase that enables Escherichia coli to utilize alkyl phosphodiesters, such as diethyl phosphate, as the sole phosphorus source. The catalytic properties of GpdQ were determined, and the best substrate found was bis(p-nitrophenyl) phosphate with a kcat/Km value of 6.7 x 10(3) M-1 s-1.
View Article and Find Full Text PDFAn array of 16 enantiomeric pairs of chiral phosphate, phosphonate, and phosphinate esters was used to establish the breadth of the stereoselective discrimination inherent within the bacterial phosphotriesterase and 15 mutant enzymes. For each substrate, the leaving group was 4-hydroxyacetophenone while the other two groups attached to the phosphorus core consisted of an asymmetric mixture of methyl, methoxy, ethyl, ethoxy, isopropoxy, phenyl, phenoxy, cyclohexyl, and cyclohexoxy substituents. For the wild-type enzyme, the relative rates of hydrolysis for the two enantiomers ranged from 3 to 5.
View Article and Find Full Text PDFWith the emergence of sequences and even structures for proteins of unknown function, structure-based prediction of enzyme activity has become a pragmatic as well as an interesting question. Here we investigate a method to predict substrates for enzymes of known structure by docking high-energy intermediate forms of the potential substrates. A database of such high-energy transition-state analogues was created from the KEGG metabolites.
View Article and Find Full Text PDFToxicol Appl Pharmacol
September 2005
Organophosphates have been widely used as insecticides and chemical warfare agents. The health risks associated with these agents have necessitated the need for better detoxification and bioremediation tools. Bacterial enzymes capable of hydrolyzing the lethal organophosphate nerve agents are of special interest.
View Article and Find Full Text PDF