Bacterial infections pose an increasingly worrisome threat to the health of humankind, with antibiotic resistance contributing significantly to this burden. With current conventional antibiotics perpetuating the problem, and a paucity in developing antibiotics, drug delivery systems incorporating nanotechnology appear promising. As such, a dual enzyme-responsive multifunctional nanostructured lipid carrier (NLC) incorporating farnesol (FAN) and triglycerol monostearate (TGMS), was conceptualized for the codelivery of vancomycin (VCM) and antimicrobial peptide (AMP) to enhance the antibacterial activity of VCM.
View Article and Find Full Text PDFThis study explored the development of novel biomimetic tannic acid-based hybrid nanocarriers (HNs) for targeted delivery of ciprofloxacin (CIP-loaded TAH-NPs) against bacterial-induced sepsis. The prepared CIP-loaded TAH-NPs exhibited appropriate physicochemical characteristics and demonstrated biocompatibility and nonhemolytic properties. Computational simulations and microscale thermophoresis studies validated the strong binding affinity of tannic acid (TA) and its nanoformulation to human Toll-like receptor 4, surpassing that of the natural substrate lipopolysaccharide (LPS), suggesting a potential competitive inhibition against LPS-induced inflammatory responses.
View Article and Find Full Text PDFBackground: Schistosomiasis is one of the endemic parasitic diseases in many developing countries. Despite this, appendicitis secondary to schistosomiasis is an uncommon condition even in some endemic areas. Schistosomal appendicitis, an incidentally discovered appendicitis associated with schistosomiasis histological findings, affects young males predominantly.
View Article and Find Full Text PDFBackground: The need for blood during a surgical procedure is greater than what blood banks are able to provide. There is an excessive amount of blood being ordered for elective surgeries, surpassing the actual requirements. Only 30% of the cross matched blood is actually used in these surgeries.
View Article and Find Full Text PDFNanodrug delivery systems (NDDS) continue to be explored as novel strategies enhance therapy outcomes and combat microbial resistance. The need for the formulation of smart drug delivery systems for targeting infection sites calls for the engineering of responsive chemical designs such as dynamic covalent bonds (DCBs). Stimuli response due to DCBs incorporated into nanosystems are emerging as an alternative way to target infection sites, thus enhancing the delivery of antibacterial agents.
View Article and Find Full Text PDFSepsis represents a critical medical condition stemming from an imbalanced host immune response to infections, which is linked to a significant burden of disease. Despite substantial efforts in laboratory and clinical research, sepsis remains a prominent contributor to mortality worldwide. Nanotechnology presents innovative opportunities for the advancement of sepsis diagnosis and treatment.
View Article and Find Full Text PDFHybrid nanoparticles (NPs) are emerging as superior alternatives to conventional nanocarriers for enhancing the delivery of antibiotics and improving their targeting at the infection site, resulting in the eradication of bacterial infections and overcoming antimicrobial resistance. They can specifically control the release of antibiotics when reaching the targeted site of infection, thus enhancing and prolonging their antimicrobial efficacy. In this review, we provide a comprehensive and an up-to-date overview of the recent advances and contributions of lipid-polymer hybrid NPs; organic-inorganic hybrid NPs; metal-organic frameworks; cell membrane-coated hybrid NPs; hybrid NP-hydrogels; and various others, that have been reported in the literature for antibacterial delivery, with emphasis on their design approaches; the nanomaterials constructed; the mechanisms of drug release; and the enhanced antibacterial efficacy of the reported hybrid nanocarriers.
View Article and Find Full Text PDFSuccessful and sustainable implementation of Competency-based Medical Education (CBME) programs is a significant and daunting challenge facing medical education worldwide. Our manuscript endorses for the first time, Systems Thinking as a concept for transforming and redesigning CBME programs employing the full 7-system elements as advocated by the Biomatrix Systems Theory. The majority of internationally recommended actions and processes for such an endeavor are highlighted, each within its system element.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
July 2022
Hyaluronic acid (HA) has become a topic of significant interest in drug delivery research due to its excellent properties, including biosafety, biodegradability, and nonimmunogenicity. Moreover, due to its ease of modification, HA can be used to prepare several HA-based nanosystems using various approaches. These approaches involve conjugating/grafting of hydrophobic moieties, polyelectrolytes complexation with cationic polymers, or surface modification of various nanoparticles using HA.
View Article and Find Full Text PDF