This research aims to contribute significantly to the field of plasmonic filtering technology within modern optical communication systems. By focusing on the development of a high-performance, more compact, and efficient design, this study explores the potential of hybrid plasmonic filters to revolutionize optical filtering applications. The approach leverages an innovative active material with electrically tunable permittivity, allowing for dynamic control over the filter's optical properties.
View Article and Find Full Text PDFRecently, there has been considerable growth in the internet of things (IoT)-based healthcare applications; however, they suffer from a lack of intrusion detection systems (IDS). Leveraging recent technologies, such as machine learning (ML), edge computing, and blockchain, can provide suitable and strong security solutions for preserving the privacy of medical data. In this paper, FIDChain IDS is proposed using lightweight artificial neural networks (ANN) in a federated learning (FL) way to ensure healthcare data privacy preservation with the advances of blockchain technology that provides a distributed ledger for aggregating the local weights and then broadcasting the updated global weights after averaging, which prevents poisoning attacks and provides full transparency and immutability over the distributed system with negligible overhead.
View Article and Find Full Text PDFReproductive toxicity is a major challenge associated with aluminum (Al) exposure. Therefore, this study aimed to investigate the effects of zinc oxide nanoparticle (ZnONP) treatment on Al-induced reproductive toxicity in rats. Thirty-two adult male albino rats were allocated into four equal groups as follows: control, AlCl orally administered group (100 mg/kg bwt), ZnONPs injected intraperitoneally (i.
View Article and Find Full Text PDF