Vanadium(V) is arising wastewater contaminant recently. Although bio-reduction of vanadium(V) is effective, the knowledge of electron transfer pathways and coordination nature by cellular organic functionalities is seriously lacking. Herein, the coordination conduct and kinetic modes for the reduction of V(V) by organic nitrogen and sulfur functionalities in working pHs are comprehensively investigated for the first time.
View Article and Find Full Text PDFRecently, covalent organic frameworks (COFs) have gained significant attention as a promising material for the elimination of various organic pollutants due to their distinctive characteristics such as high surface area, adjustable porosity, high removal efficiency, and recyclability. The efficiency and selectivity of COFs depend on the decorated functional group and the pore size of the chemical structure. Hence, this review highlights the adsorption removal mechanism of different organic contaminants such as (pharmaceutical and personal care products, pesticides, dyes, and industrial by-products) by COFs from an aqueous solution.
View Article and Find Full Text PDFIn the present study, lanthanum hydroxide (La OH)-engineered sewage sludge biochar (La-SSBC) was utilized for efficient phosphate elimination from an aqueous medium. A high adsorption capacity of 312.55 mg P/g was achieved using La-SSBC at 20 °C, which was an excellent adsorbent performance in comparison to other biochar-based adsorbents.
View Article and Find Full Text PDFDealing with unwanted nuclear waste is still a serious issue from the point of view of humans and the environment because of its harmful and dangerous effects. Recently, porous organic frameworks (POFs) have gained an increasing concern as effective materials in the removal of various types of hazardous metal ions, especially radioactive metal ions. POFs are a unique class that included covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) with strong covalent bonds, large surface area, high adsorption capacity, tunable porosity, and a porous structure with more efficient than conventional adsorbents.
View Article and Find Full Text PDFChloride ion (Cl) is ever-present in aquatic environments. Different Cl concentration have been reported in industrial water (760 mM), surface water (<21 mM), seawater (540 mM) and groundwater (<21 mM) which could potentially accumulate into large concentrations in the sea. This mini-review examines more than 200 studies and found that Cl ions can react with strong oxidants (SO, OH, and HSO) generated from persulfate activation, inducing the formation of chlorine radicals, that can either (1) directly react with organics or (2) generate chlorine radicals that can participate in the conversion of the organic substrate.
View Article and Find Full Text PDFBackground: No curative treatment is known for primary ovarian failure; however, mesenchymal stem cells (MSCs), through self-renewal and regeneration, push the trial to evaluate their role in the treatment of ovarian failure. The aim of this study was to explore the impact of MSCs on cyclophosphamide (CTX)-induced ovarian failure in rabbits and to clarify the mechanism(s) by which MSCs exert their action.
Methods: Thirty-five adult female rabbits were injected with CTX to induce ovarian failure.