The combination of methylprednisolone (MPDL) and curcumin (CUR) for treating rheumatoid arthritis (RA) offers several therapeutic advantages. This synergy allows for a reduction in the dosage of methylprednisolone, minimizing potential side effects associated with long-term steroid use while maintaining or enhancing the treatment's effectiveness. The objective of this study is to prepare drug carriers for MPDL and CUR aimed at treating RA, utilizing Freund's Complete Adjuvant-induced arthritic rat model (AIA).
View Article and Find Full Text PDFThe susceptibility of bone tissues to various factors such as ageing, accidents, and diseases has led to extensive tissue engineering research focusing on bone tissues. Hence, this research also aims to determine the optimal amount of Akermanite (AK) addition to the polylactic acid scaffold for bone tissue engineering applications, as well as the effects of surface modification on its properties. The Akermanite was synthesized using the sol-gel method.
View Article and Find Full Text PDFEmerging as a promising drug target for Alzheimer's disease (AD) therapy, glycogen synthase kinase 3β (GSK-3β) has garnered attention. This study sought to rigorously scrutinize a compendium of natural compounds retrieved from the ZINC database through pharmacodynamic experiments, employing a 1 H-indazole-3-carboxamide (INDZ) scaffold, to identify compounds capable of inhibiting the GSK-3β protein. Utilizing a multi-step approach, the study involved pharmacophore analysis, followed by molecular docking to select five promising ligands for further investigation.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurological condition currently with 47 million people suffering from it globally. AD might have many reasons such as genetic issues, environmental factors, and Aβ accumulation, which is the biomarker of the disease. Since the primary reason is unknown, there is no targeted treatment at the moment, but ongoing research aims to slow its progression by managing amyloid-beta peptide production rather than symptomatic improvement.
View Article and Find Full Text PDFThe utilization of 3D printing technology for the fabrication of graft substitutes in bone repair holds immense promise. However, meeting the requirements for printability, bioactivity, mechanical strength, and biological properties of 3D printed structures concurrently poses a significant challenge. In this study, we introduce a novel approach by incorporating amorphous magnesium phosphate-graphene oxide (AMP-GO) into a thermo-crosslinkable chitosan/β glycerol phosphate (CS/GP) ink.
View Article and Find Full Text PDFCritical sized craniofacial defects are among the most challenging bone defects to repair, due to the anatomical complexity and aesthetic importance. In this study, a polylactic acid/hardystonite-graphene oxide (PLA/HTGO) scaffold was fabricated through 3D printing. In order to upgrade the 3D printed scaffold to a highly porous scaffold, its channels were filled with pectin-quaternized chitosan (Pec-QCs) polyelectrolyte solution containing 0 or 20 mg/mL of simvastatin (Sim) and then freeze-dried.
View Article and Find Full Text PDFIn the current study, a core-shell nanofibrous wound dressing based on Pluronic-F127 (F127) containing 2 wt% mupirocin (Mup) core and pectin (Pec)-keratin (Kr) shell was fabricated through coaxial electrospinning technique, and the blended nanofibers were also fabricated from the same materials. The fiber diameter and specific surface area of the blended nanofibers were about 101.56 nm and 20.
View Article and Find Full Text PDFBone tissue engineering (BTE) has gained significant attention for the regeneration of bone tissue, particularly for critical-size bone defects. The aim of this research was first to synthesize nanopowders of hardystonite (HT) through ball milling and then to manufacture composite scaffolds for BTE use out of polycaprolactone (PCL) containing 0, 3, 5, and 10 wt% HT by electrospinning method. The crystallite size of the synthesized HT nanopowders was 42.
View Article and Find Full Text PDFA multi-layered scaffold can mimic the hierarchical structure of the skin, accelerate the wound healing, and protect the skin against contamination and infection. In this study, a three-layered (3L) scaffold was manufactured through a combination of 3D printing and electrospinning technique. A top layer of polyurethane (PU) nanofibrous coating for the prevention of micro-organism penetration was created through electrospining.
View Article and Find Full Text PDF3D printing fabrication has become a dominant approach for the creation of tissue engineering constructs as it is accurate, fast, reproducible and can produce patient-specific templates. In this study, 3D printing is applied to create nanocomposite scaffold of polylactic acid (PLA)/hardystonite (HT)-graphene oxide (GO). GO is utilized as a coupling agent of alkaline treated HT nanoparticles within PLA matrix.
View Article and Find Full Text PDFBiological materials such as cell-derived membrane vesicles have emerged as alternative sources for molecular delivery systems, owing to multicomponent features, the inherent functionalities and signaling networks, and easy-to-carry therapeutic agents with various properties. Herein, red blood cell membrane (RBCM) vesicle-laden methacrylate kappa-carrageenan (KaMA) composite hydrogel is introduced for soft tissue engineering. Results revealed that the characteristics of hybrid hydrogels were significantly modulated by changing the RBCM vesicle content.
View Article and Find Full Text PDFC-N cross-coupling bond formation reactions have become valuable approaches to synthesizing anilines and their derivatives, known as important chemical compounds. Recent developments in this field have focused on versatile catalysts, simple operation methods, and green reaction conditions. This review article presents an overview of C-N cross-coupling reactions in pharmaceutical compound synthesis reports.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2023
Despite recent advances in bone adhesives applied for full median sternotomy, the regeneration of bone defects has remained challenging since the healing process is hampered by poor adhesiveness, limited bioactivity, and lack of antibacterial functions. Bioinspired adhesives by marine organisms provide a novel concept to circumvent these problems. Herein, a dual cross-link strategy is employed in designing a multifaceted bioinspired adhesive consisting of a catechol amine-functionalized hyperbranched polymer (polydopamine--acrylate, PDA), bredigite (BR) nanoparticles, and Fe ions.
View Article and Find Full Text PDFObsessive-compulsive disorder (OCD) is a debilitating neuropsychiatric disorder, in which the patient endures intrusive thoughts or is compelled to perform repetitive or ritualized actions. Many cases of OCD are considered to be familial or heritable in nature. It has been shown that a variety of internal and external risk factors are involved in the pathogenesis of OCD.
View Article and Find Full Text PDFImplant-related infection is one of the main challenges in periodontal diseases. According to the zwitterionic properties of keratin, we aim to develop guided bone regeneration (GBR) membrane with antibacterial and bioactivity properties using a keratin coating. In this study, electrospun silk fibroin (SF)-Laponite (LAP) fibrous membranes were developed as GBR membranes, and keratin extracted from sheep wool was electrosprayed on them.
View Article and Find Full Text PDFMagnesium phosphates (MgP)s have attracted interest as an alternative biomaterial compared to the calcium phosphate (CaP)s compounds in the bone regeneration application in terms of their prominent biodegradability, lack of cytotoxicity, and ability of bone repair stimulation. Among them, amorphous magnesium phosphates (AMP)s indicated a higher rate of resorption, while preserving high osteoblasts viability and proliferation, which is comparable to their CaP peers. However, fast degradation of AMP leads to the initial fast release of Mg ions and adverse effects on its excellent biological features.
View Article and Find Full Text PDFIn tissue engineering, three-dimensional (3D) printing is an emerging approach to producing functioning tissue constructs to repair wounds and repair or replace sick tissue/organs. It allows for precise control of materials and other components in the tissue constructs in an automated way, potentially permitting great throughput production. An ink made using one or multiple biomaterials can be 3D printed into tissue constructs by the printing process; though promising in tissue engineering, the printed constructs have also been reported to have the ability to lead to the emergence of unforeseen illnesses and failure due to biomaterial-related infections.
View Article and Find Full Text PDFBone marrow-derived mesenchymal stem cells (MSCs) offer a promising therapeutic method for cardiac tissue regeneration. However, to monitor the fate of MSCs for tissue repair, a better stem cell delivery carrier is needed. Developing a unique injectable and shear-thinning dual cross-linked hybrid hydrogel for MSC delivery for cardiac tissue engineering is highly desirable.
View Article and Find Full Text PDFThe aim of this study is to introduce an inspiring biomimetic system based on the red blood cell membrane (RBCM) vesicles for improved encapsulation efficiency and release of curcumin (Cur). Here, the role of the sonication time (0.5, 1.
View Article and Find Full Text PDFDetoxification of aflatoxin M from solution and milk using layered double hydroxides was investigated. The Aluminum-Magnesium layered double hydroxide (Al-Mg LDH) and Iron-Magnesium layered double hydroxide (Fe-Mg LDH) were selected in their calcined and non-calcined forms to evaluate the effect of the calcination on detoxification. These materials were produced using the co-precipitation method.
View Article and Find Full Text PDFOne of the best methods to prevent wound infection and speed up wound healing is wound dressing based on nanofiber-polymer scaffolds, which have acceptable antimicrobial performance and appropriate skin regeneration capabilities. In this paper, the electrospinning method was applied to synthesize the polyvinylpyrrolidone-acrylic acid hydrogel (PVPA)-eggshell membrane (ESM)-reduced graphene oxide (rGO) nanosheets nanocomposite dressings with different reduced graphene oxide contents (0, 0.5, 1, and 2 wt.
View Article and Find Full Text PDFThe study aims to develop a novel nanohybrid shear-thinning hydrogel with fast gelation, and variable mechanical and biological properties. This nanohybrid hydrogel was developed via self-assembly guest-host interaction between β-cyclodextrin modified alginate (host macromere, Alg-CD) and adamantine modified graphene oxide (guest macromere, Ad-GO) and subsequent ionic crosslinking process. We found that the rheological and mechanical properties of hydrogels were controlled via macromere concentration and the host: guest macromere ratio, due to the modulation of crosslinking density and network structure.
View Article and Find Full Text PDFThree-dimensional (3D) bioprinting is an appealing and revolutionary manufacturing approach for the accurate placement of biologics, such as living cells and extracellular matrix (ECM) components, in the form of a 3D hierarchical structure to fabricate synthetic multicellular tissues. Many synthetic and natural polymers are applied as cell printing bioinks. One of them, alginate (Alg), is an inexpensive biomaterial that is among the most examined hydrogel materials intended for vascular, cartilage, and bone tissue printing.
View Article and Find Full Text PDF