Publications by authors named "Emad Tolba"

In recent years, polyelectrolytes have been successfully used as an alternative to non-collagenous proteins to promote interfibrillar biomineralization, to reproduce the spatial intercalation of mineral phases among collagen fibrils, and to design bioinspired scaffolds for hard tissue regeneration. Herein, hybrid nanofibers were fabricated via electrospinning, by using a mixture of Poly ɛ-caprolactone (PCL) and cationic cellulose derivatives, i.e.

View Article and Find Full Text PDF

Using an in situ sol-gel technique, new nanoarchitectonics of propolis loaded zinc oxide nanoarchitectonics (PP/ZnO-NPs) were developed in order to improve the in vivo outcomes of collagen-chitosan gel in wounded rats. The obtained nanoarchitectonics were fully characterized. The XRD results indicate the presence of a Zincite phase for ZnO-NPs and Zincite accompanied by a minor amount of zinc hydroxide for PP/ZnO-NPs samples.

View Article and Find Full Text PDF

To combat infections, silver was used extensively in biomedical field but there was a need for a capping agent to eliminate its cytotoxic effects. In this study, polymeric calcium polyphosphate was doped by silver with three concentrations 1, 3 or 5 mol.% and were characterized by TEM, XRD, FTIR, TGA.

View Article and Find Full Text PDF

The use of polyelectrolytes is emerging as a fascinating strategy for the functionalization of biomedical membranes, due to their ability to enhance biological responses using the interaction effect of charged groups on multiple interface properties. Herein, two different polyelectrolytes were used to improve the antibacterial properties of polycaprolactone (PCL) nanofibers fabricated via electrospinning. First, a new cationic cellulose derivative, cellulose-bearing imidazolium tosylate (CIMD), was prepared via the nucleophilic substitution of the tosyl group using 1-methylimidazole, as confirmed by NMR analyses, and loaded into the PCL nanofibers.

View Article and Find Full Text PDF

Bee propolis is one of the most common natural extracts and has gained significant interest in biomedicine due to its high content of phenolic acids and flavonoids, which are responsible for the antioxidant activity of natural products. The present study report that the propolis extract (PE) was produced by ethanol in the surrounding environment. The obtained PE was added at different concentrations to cellulose nanofiber (CNF)/poly(vinyl alcohol) (PVA), and subjected to freezing thawing and freeze drying methods to develop porous bioactive matrices.

View Article and Find Full Text PDF

Functional cotton fabrics using silver-based nanoparticles (AgNPs) have attracted a lot of attention as a new generation of healthcare wearable textile. In this study, cotton fabrics were coated via impregnation with silver nanoparticles using chitosan (Cs) and (or) chitosan-organosilica (Cs-OSH) solutions as adhesives matrices. The physicochemical properties were studied using UV-VIS spectroscopy, and transmission electron microscopy (TEM) and scanning electron microscope coupled with energy-dispersive X-ray spectroscopy methods (SEM-EDX).

View Article and Find Full Text PDF

The effect of the polyanionic polymer of inorganic polyphosphate (polyP) involved in innate immunity on the binding of the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein to the cellular ACE2 receptor was studied. The RBD surface comprises a basic amino acid stretch of four arginine residues which interact with the physiological polyP (polyP) and polyP. Subsequently, the interaction of RBD with ACE2 is sensitively inhibited.

View Article and Find Full Text PDF

In the present study, the fabrication of a biomimetic wound dressing that mimics the extracellular matrix, consisting of a hydrogel matrix composed of non-oxidized and periodate-oxidized marine alginate, was prepared to which gelatin was bound via Schiff base formation. Into this alginate/oxidized-alginate-gelatin hydrogel, polyP was stably but reversibly integrated by ionic cross-linking with Zn ions. Thereby, a soft hybrid material is obtained, consisting of a more rigid alginate scaffold and porous structures formed by the oxidized-alginate-gelatin hydrogel with ionically cross-linked polyP.

View Article and Find Full Text PDF

Amorphous Ca-phosphate (ACP) particles stabilized by inorganic polyphosphate (polyP) were prepared by co-precipitation of calcium and phosphate in the presence of polyP (15% [w/w]). These hybrid nanoparticles showed no signs of crystallinity according to X-ray diffraction analysis, in contrast to the particles obtained at a lower (5% [w/w]) polyP concentration or to hydroxyapatite. The ACP/15% polyP particles proved to be a suitable matrix for cell growth and attachment and showed pronounced osteoblastic and vasculogenic activity in vitro.

View Article and Find Full Text PDF

A drug encapsulation/delivery system using a novel principle is described that is based on an intra-particle migration of calcium ions between a central Ca-enriched nanoparticle core and the surrounding shell compartment. The supply of Ca is needed for the formation of a coacervate shell around the nanoparticles, acting as the core of drug-loadable core-shell particles, using the physiological inorganic polymer polyphosphate (polyP). This polyanion has the unique property to form, at an alkaline pH and in the presence of a stoichiometric surplus of calcium ions, water-insoluble and stabile amorphous nanoparticles.

View Article and Find Full Text PDF

Inorganic polyphosphate (polyP) is a morphogenetically active and metabolic energy-delivering physiological polymer that is released from blood platelets. Here, we show that polyP efficiently inhibits the binding of the envelope spike (S)-protein of the coronavirus SARS-CoV-2, the causative agent of COVID-19, to its host cell receptor ACE2 (angiotensin-converting enzyme 2). To stabilize polyP against the polyP-degrading alkaline phosphatase, the soluble polymer was encapsulated in silica/polyP nanoparticles.

View Article and Find Full Text PDF

The distinguished property of the physiological polymer, inorganic polyphosphate (polyP), is to act as a bio-intelligent material which releases stimulus-dependent metabolic energy to accelerate wound healing. This characteristic is based on the bio-imitating feature of polyP to be converted, upon exposure to peptide-containing body fluids, from stable amorphous nanoparticles to a physiologically active and energy-delivering coacervate phase. This property of polyP has been utilized to fabricate a wound mat consisting of compressed collagen supplemented with amorphous polyP particles, formed from the inorganic polyanion with an over-stoichiometric ratio of zinc ions.

View Article and Find Full Text PDF

Cement is used both as a construction material and for medical applications. Previously, it has been shown that the physiological polymer inorganic polyphosphate (polyP) is morphogenetically active in regeneration of skin, bone, and cartilage. The present study investigates the question if this polymer is also a suitable additive to improve the self-healing capacity not only of construction cement but also of inorganic bone void fillers.

View Article and Find Full Text PDF

There is a strong interest in cement additives that are able to prevent or mitigate the adverse effects of cracks in concrete that cause corrosion of the reinforcement. Inorganic polyphosphate (polyP), a natural polymer that is synthesized by bacteria, even those on cement/concrete, can increase the resistance of concrete to progressive damage from micro-cracking. Here we use a novel bioinspired strategy based on polyP-stabilized amorphous calcium carbonate (ACC) to give this material self-healing properties.

View Article and Find Full Text PDF

Background: The aim of the present study was to fabricate double layered scaffolds of electrospun polycaprolactone (PCL) and poly(ethylene oxide) (PEO). The electrospun PCL fibers were functionalized with wintergreen oil (WO) as a novel approach to prevent vascular grafts failure due to thrombosis by adjusting biomaterial-blood interactions.

Methods: PCL tubular scaffolds were prepared by electrospinning approach and coated with PEO as a hydrophilic polymer.

View Article and Find Full Text PDF

A new biomimetic strategy to im prove the self-healing properties of Portland cement is presented that is based on the application of the biogenic inorganic polymer polyphosphate (polyP), which is used as a cement admixture. The data show that synthetic linear polyp, with an average chain length of 40, as well as natural long-chain polyP isolated from soil bacteria, has the ability to support self-healing of this construction material. Furthermore, polyP, used as a water-soluble Na-salt, is subject to Na/Ca exchange by the Ca from the cement, resulting in the formation of a water-rich coacervate when added to the cement surface, especially to the surface of bacteria-containing cement/concrete samples.

View Article and Find Full Text PDF

The preparation and characterization of a porous hybrid cryogel based on the two organic polymers, poly(vinyl alcohol) (PVA) and karaya gum (KG), into which polyphosphate (polyP) nanoparticles have been incorporated, are described. The PVA/KG cryogel is prepared by intermolecular cross-linking of PVA via freeze-thawing and Ca-mediated ionic gelation of KG to form stable salt bridges. The incorporation of polyP as amorphous nanoparticles with Ca ions (Ca-polyP-NP) is achieved using an in situ approach.

View Article and Find Full Text PDF

Objective: In the present study, we investigated the fusion process between amorphous microparticles of the calcium salt of the physiological polymer comprising orthophosphate units, of inorganic polyphosphate (polyP), and enamel.

Methods: This polymer was incorporated as an ingredient into toothpaste and the fusion process was studied by electron microscopy and by synchrotron-based X-ray tomography microscopy (SRXTM) techniques.

Results: The data showed that toothpaste, supplemented with the amorphous Ca-polyP microparticles (aCa-polyP-MP), not only reseals tooth defects on enamel, like carious lesions, and dentin, including exposed dentinal tubules, but also has the potential to induce re-mineralization in the enamel and dentin regions.

View Article and Find Full Text PDF

The tube formation assay with human umbilical vein endothelial cells (HUVEC) was applied to identify the extra- and intracellular sources of metabolic energy/ATP required for cell migration during the initial stage of microvascularization. Extracellularly, the physiological energy-rich polymer, inorganic polyphosphate (polyP), applied as biomimetic amorphous calcium polyP microparticles (Ca-polyP-MP), is functioning as a substrate for ATP generation most likely via the combined action of the alkaline phosphatase (ALP) and the adenylate kinase (AK). The linear Ca-polyP-MP with a size of 40 phosphate units, close to the polyP in the acidocalcisomes in the blood platelets, were found to increase endothelial cell tube formation, as well as the intracellular ATP levels.

View Article and Find Full Text PDF

Inorganic polyphosphate [polyP] has proven to be a promising physiological biopolymer for potential use in regenerative medicine because of its morphogenetic activity and function as an extracellular energy-donating system. Amorphous Ca -polyP nanoparticles [Ca-polyP-NPs] are characterized by a high zeta potential with -34 mV (at pH 7.4).

View Article and Find Full Text PDF

We describe the fabrication of a new scaffold, an inorganic-organic hybrid biomaterial, consisting of the physiological polymers: the inorganic polymer polyphosphate (polyP), as well as the organic macromolecules collagen and chondroitin sulfate. The polyP polymer is composed of multiple phosphate orthophosphate units linked together by high-energy phosphoanhydride bonds. Chondroitin sulfate has been included due to its hydrogel-forming properties.

View Article and Find Full Text PDF

Objective: In this study we demonstrate that inorganic polyphosphate (polyP) exhibits a dual protective effect on teeth: it elicits a strong antibacterial effect against the cariogenic bacterium Streptococcus mutans and, in form of amorphous calcium polyP microparticles (size of 100-400nm), it efficiently reseals cracks/fissures in the tooth enamel and dentin.

Methods: Three different formulations of amorphous polyP microparticles (Ca-polyP, Zn-polyP and Sr-polyP) were prepared.

Results: Among the different polyP microparticles tested, the Ca-polyP microparticles, as a component of a newly developed formulation of a dentifrice, turned out to be most effective in inhibiting growth of S.

View Article and Find Full Text PDF

In this study, we investigated the effect of the two flavonoids, baicalin (baicalein 7-O-[Formula: see text]- d-glucuronic acid) and its aglycone, baicalein (5,6,7-trihydroxyflavone), after encapsulation into amorphous calcium polyphosphate (Ca-polyP) microparticles on mineralization of primary human osteoblasts (phOSB). Both flavonoids, which come from root extracts of Scutellaria baicalensis Georgi, are used in Traditional Chinese Medicine, and are nontoxic in cells up to a concentration of 3[Formula: see text][Formula: see text]g/ml. The morphogenetically active, energy-rich Ca-polyP particles with a stoichiometric P:Ca ratio of 1:2 are degraded by cellular alkaline phosphatase (ALP) to ortho-phosphate used for bone hydroxyapatite formation.

View Article and Find Full Text PDF

Based on natural principles, we developed a novel toothpaste, containing morphogenetically active amorphous calcium polyphosphate (polyP) microparticles which are enriched with retinyl acetate ("a-polyP/RA-MP"). The spherical microparticles (average size, 550 ± 120 nm), prepared by co-precipitating soluble Na-polyP with calcium chloride and supplemented with retinyl acetate, were incorporated into a base toothpaste at a final concentration of 1% or 10%. The "a-polyP/RA-MP" ingredient significantly enhanced the stimulatory effect of the toothpaste on the growth of human mesenchymal stem cells (MSC).

View Article and Find Full Text PDF

The availability of appropriate dressings for treatment of wounds, in particular chronic wounds, is a task that still awaits better solutions than provided by currently applied materials. The method of electrospinning enables the fabrication of novel materials for wound dressings due to the high surface area and porosity of the electrospun meshes and the possibility to include bioactive ingredients. Recent results show that the incorporation of biologically active inorganic polyphosphate microparticles and microspheres and synergistically acting retinoids into electrospun polymer fibers yields biocompatible and antibacterial mats for potential dressings with improved wound-healing properties.

View Article and Find Full Text PDF