Publications by authors named "Emad M Hafez"

Soil contamination with cadmium (Cd) and salinity poses a significant challenge, affecting crop health and productivity. This study explores the combined application of sugarcane bagasse (SCB) and zinc oxide nanoparticles (ZnO NPs) to mitigate the toxic effects of Cd and salinity in wheat plants. Field experiments conducted in Cd-contaminated saline soils revealed that the application of SCB (0, 5, and 10 t ha) and ZnO NPs (0, 12.

View Article and Find Full Text PDF

Excessive irrigation of saline-alkaline soils with Cd-contaminated wastewater has resulted in deterioration of both soil and plant quality. To an investigate this, a study was conducted to explore the effects of biochar (applied at 10 t ha), PGPRs ( (USDA 110) + at 1:1 ratio), and Si-NPs (25 mg L) on soybean plants grown in saline-alkali soil irrigated with wastewater. The results showed that the trio-combination of biochar with PGPRs, (as soil amendments) and Si-NPs (as foliar spraying), was more effective than individual or coupled applications in reducing Cd bioavailability in the soil, minimizing its absorption, translocation and bioconcentration in soybean tissues.

View Article and Find Full Text PDF

In the context of increasing agricultural challenges posed by soil salinity and drought stress, the main importance of the present study was to evaluate some novel treatments for improving canola productivity and resilience by applying wood distillate (WD) in combination with bagasse ash (SBA). A two-year field experiment using a split plot design was conducted and evaluated several physiological and biochemical parameters under different irrigation regimes conducted at 80% and 50% field capacity. While there were considerable moderation effects of SBA and WD on soil salinity, expressed as exchangeable sodium percentage (ESP), under both well-irrigated and drought conditions, more importantly, the ESP was reduced to 31% under drought stress with combined WD and SBA applications over any single factor.

View Article and Find Full Text PDF

In the center of the Nile Delta in Egypt, the Kitchener drain as the primary drainage discharges about 1.9 billion m per year of water, which comprises agricultural drainage (75 %), domestic water (23 %), and industrial water (2 %), to the Mediterranean Sea. Cadmium (Cd) stands out as a significant contaminant in this drain; therefore, this study aimed to assess the integration of biochar (0, 5, and 10 ton ha) and three PGPRs (PGPR-1, PGPR-2, and PGPR-3) to alleviate the negative impacts of Cd on sunflowers (Helianthus annuus L.

View Article and Find Full Text PDF

White mold, caused by the necrotrophic fungus , is a challenging disease to common bean cultivation worldwide. In the current study, two non-proteinogenic amino acids (NPAAs), -aminobutyric acid (GABA) and -alanine, were suggested as innovative environmentally acceptable alternatives for more sustainable management of white mold disease. , GABA and -alanine individually demonstrated potent dose-dependent fungistatic activity and effectively impeded the radial growth and development of mycelium.

View Article and Find Full Text PDF

There is an urgent demand for biostimulant amendments that can sustainably alleviate osmotic stress. However, limited information is available about the integrated application of vermicompost and a cyanobacteria extract on cotton plants. In 2020 and 2021, two field experiments were carried out in which twelve combinations of three irrigation intervals were employed every 14 days (Irrig.

View Article and Find Full Text PDF

Soil and water salinity are among the most fatal environmental challenges that threaten agricultural production worldwide. This study investigated the potential impact(s) of soil amendment using composted bagasse and/or foliar application of cyanobacteria-based bio-stimulants (, also known as ) to combat the harmful effect(s) of using saline water to irrigate barley plants grown in salt-affected soils during 2020/2021 and 2021/2022. Briefly, the dual application of composted bagasse and cyanobacteria-based bio-stimulants significantly improved the soil properties, buffered the exchangeable sodium percentage (ESP), and enhanced the activity of soil enzymes (urease and dehydrogenase).

View Article and Find Full Text PDF

The growth and development of rice face many issues, including its exposure to high soil salinity. This issue can be alleviated using new approaches to overwhelm the factors that restrict rice productivity. The objective of our investigation was the usage of the rhizobacteria (Pseudomonas koreensis and Bacillus coagulans) as plant growth-promoting rhizobacteria (PGPRs) and nano-silicon, which could be a positive technology to cope with the problems raised by soil salinity in addition to improvement the morpho-physiological properties, and productivity of two rice varieties (i.

View Article and Find Full Text PDF

Exploitation of low-quality water or irrigation of field crops with saline water in salt-affected soil is a critical worldwide challenge that rigorously influences agricultural productivity and sustainability, especially in arid and semiarid zones with limited freshwater resources. Therefore, we investigated a synergistic amendment strategy for salt-affected soil using a singular and combined application of plant growth-promoting rhizobacteria (PGPR at 950 g ha; SARS 10 and MG209738) and silica nanoparticles (SiNPs) at 500 mg L to mitigate the detrimental impacts of irrigation with saline water on the growth, physiology, and productivity of barley ( L.), along with soil attributes and nutrient uptake during 2019/2020 and 2020/2021.

View Article and Find Full Text PDF

Water scarcity is a major environmental stress that adversatively impacts wheat growth, production, and quality. Furthermore, drought is predicted to be more frequent and severe as a result of climate change, particularly in arid regions. Hence, breeding for drought-tolerant and high-yielding wheat genotypes has become more decisive to sustain its production and ensure global food security with continuing population growth.

View Article and Find Full Text PDF

Plant growth and crop productivity under unfavorable environmental challenges require a unique strategy to scavenge the severely negative impacts of these challenges such as soil salinity and water stress. Compost and plant growth-promoting rhizobacteria (PGPR) have many beneficial impacts, particularly in plants exposed to different types of stress. Therefore, a field experiment during two successive seasons was conducted to investigate the impact of compost and PGPR either separately or in a combination on exchangeable sodium percentage (ESP), soil enzymes (urease and dehydrogenase), wheat physiology, antioxidant defense system, growth, and productivity under deficient irrigation and soil salinity conditions.

View Article and Find Full Text PDF

The aim of the study was to estimate the impact of soil amendments (i.e., phosphogypsum and plant growth-promoting rhizobacteria (PGPR)) separately or their combination on exchangeable sodium percentage (ESP), soil enzymes' activity (urease and dehydrogenase), pigment content, relative water content (RWC), antioxidant enzymatic activity, oxidative stress, productivity, and quality of quinoa under deficient irrigation conditions in two field experiments during the 2019-2020 and 2020-2021 seasons under salt-affected soil.

View Article and Find Full Text PDF

Water scarcity, due to physical shortage or inadequate access, is a major global challenge that severely affects agricultural productivity and sustainability. Deficit irrigation is a promising strategy to overcome water scarcity, particularly in arid and semiarid regions with limited freshwater resources. However, precise application of deficit irrigation requires a better understanding of the plant response to water/drought stress.

View Article and Find Full Text PDF

The utilization of low-quality water or slightly saline water in sodic-saline soil is a major global conundrum that severely impacts agricultural productivity and sustainability, particularly in arid and semiarid regions with limited freshwater resources. Herein, we proposed an integrated amendment strategy for sodic-saline soil using biochar and/or plant growth-promoting rhizobacteria (PGPR; SARS 10 and MG209738) to alleviate the adverse impacts of saline water on the growth, physiology, and productivity of maize ( L.), as well as the soil properties and nutrient uptake during two successive seasons (2018 and 2019).

View Article and Find Full Text PDF

Osmotic stress is a major physiologic dysfunction that alters the water movement across the cell membrane. Soil salinity and water stress are major causal factors of osmotic stress that severely affect agricultural productivity and sustainability. Herein, we suggested and evaluated the impact of integrated biochar-based soil amendment and exogenous glycine betaine application on the growth, physiology, productivity, grain quality, and osmotic stress tolerance of rice ( L.

View Article and Find Full Text PDF

Water stress or soil salinity is considered the major environmental factor affecting plant growth. When both challenges are present, the soil becomes infertile, limiting plant productivity. In this work a field experiment was conducted during the summer 2019 and 2020 seasons to evaluate whether plant growth-promoting microbes (PGPMs) and nanoparticles (Si-ZnNPs) have the potential to maintain soybean growth, productivity, and seed quality under different watering intervals (every 11 (IW), 15 (IW) and 19 (IW) days) in salt-affected soil.

View Article and Find Full Text PDF

The continuity of traditional planting systems in the last few decades has encountered its most significant challenge in the harsh changes in the global climate, leading to frustration in the plant growth and productivity, especially in the arid and semi-arid regions cultivated with moderate or sensitive crops to abiotic stresses. Faba bean, like most legume crops, is considered a moderately sensitive crop to saline soil and/or saline water. In this connection, a field experiment was conducted during the successive winter seasons 2018/2019 and 2019/2020 in a salt-affected soil to explore the combined effects of plant growth-promoting rhizobacteria (PGPR) and potassium (K) silicate on maintaining the soil quality, performance, and productivity of faba bean plants irrigated with either fresh water or saline water.

View Article and Find Full Text PDF

Soil water and nutrient status are two of the most important factors for plant development and crop yield. Vermicompost and biochar are supposed to amend soil attributes and increase the productivity. However, little is known about their mixture application on soil quality and nutrient uptake under natural conditions.

View Article and Find Full Text PDF

Given the expectancy of the water supply becoming scarce in the future and more expensive, water conservation during wheat production processes has become very crucial especially in saline sodic soil. Biochar and salicylic acid (SA) were used to assess the potential to alleviate the influences of depletion of available soil moisture (DAM) on physicochemical, physiological, biochemical attributes, as well as wheat production absorption ( L. cv.

View Article and Find Full Text PDF

Land degradation due to soil salinity and sodicity is a serious concern in arid ecosystems. Despite the importance of conservation tillage in carbon sequestration and improving soil properties, its effect on saline-sodic soils under amendment application remains unknown. Therefore, the present study aimed to explore the combined effects of inorganic (sulfuric acid and gypsum) and organic (vermicompost) soil amendments and tillage systems (zero, reduced and deep tillage) on saline-sodic soil properties and wheat productivity.

View Article and Find Full Text PDF

Knowledge of combining ability and genetic diversity are important prerequisites for the development of outstanding hybrids that are tolerant to high plant density. This work was carried out to assess general combining ability (GCA) and specific combining ability (SCA), identify promising hybrids, estimate genetic diversity among the inbred lines and correlate genetic distance to hybrid performance and SCA across different plant densities. A total of 28 F hybrids obtained by crossing eight adverse inbred lines (four local and four exotic) were evaluated under three plant densities 59,500 (D1), 71,400 (D2) and 83,300 (D3) plants ha using spilt plot design with three replications at two locations during 2018 season.

View Article and Find Full Text PDF