A significant increase in circulating cell-free DNA (cfDNA) occurs with physical exercise, which depends on the type of exertion and the duration. The aims of this study were as follows: (1) to investigate the time course of cfDNA and conventional markers of muscle damage from immediately after to 96 h after muscle-damaging exercise; and (2) to investigate the relationship between cfDNA and indicators of primary (low-frequency fatigue and maximal voluntary isometric contraction) and secondary (creatine kinase and delayed-onset muscle soreness) muscle damage in young healthy males. Fourteen participants (age, 22 ± 2 years; weight, 84.
View Article and Find Full Text PDFPurpose: This study aimed to investigate the impact of sprint interval training (SIT) on both the acute and 3-week modulations of cell-free DNA (cfDNA), as well as its association with neuromuscular fatigue and physical performance in healthy young and old men.
Methods: Ten young (20-25 year old) and nine elderly (63-72 year old) healthy men performed nine SIT sessions consisting of 4-to-6-all-out cycling repetitions of 30 s interspaced with 4-min rest intervals. We compared the maximal voluntary contractions torque, central activation ratio, low-frequency fatigue (LFF), and cfDNA concentrations between the groups before, immediately after, 1 h after, and 24 h after the first and ninth SIT sessions.
Background: COVID-19 is a worldwide pandemic caused by the highly infective SARS-CoV-2. There is a need for biomarkers not only for overall prognosis but also for predicting the response to treatments and thus for improvements in the clinical management of patients with COVID-19. Circulating cell-free DNA (cfDNA) has emerged as a promising biomarker in the assessment of various pathological conditions.
View Article and Find Full Text PDFPsychological stress affects the immune system and activates peripheral inflammatory pathways. Circulating cell-free DNA (cfDNA) is associated with systemic inflammation, and recent research indicates that cfDNA is an inflammatory marker that is sensitive to psychological stress in humans. The present study investigated the effects of acute stress on the kinetics of cfDNA in a within-subjects design.
View Article and Find Full Text PDF