Publications by authors named "Elze Hesse"

Model microbial communities are regularly used to test ecological and evolutionary theory as they are easy to manipulate and have fast generation times, allowing for large-scale, high-throughput experiments. A key assumption for most model microbial communities is that they stably coexist, but this is rarely tested experimentally. Here we report the (dis)assembly of a five-species microbial community from a metacommunity of soil microbes that can be used for future experiments.

View Article and Find Full Text PDF

Evolution can occur over ecological timescales, suggesting a potentially important role for rapid evolution in shaping community trait distributions. However, evidence of concordant eco-evolutionary dynamics often comes from in vitro studies of highly simplified communities, and measures of ecological and evolutionary dynamics are rarely directly comparable. Here, we quantified how ecological species sorting and rapid evolution simultaneously shape community trait distributions by tracking within- and between-species changes in a key trait in a complex bacterial community.

View Article and Find Full Text PDF

Invasions are commonly found to benefit from disturbance events. However, the importance of the relative timing of the invasion and disturbance for invader success and impact on community composition remains uncertain. Here, we experimentally test this by invading a five-species bacterial community on eight separate occasions-four before a disturbance and four after.

View Article and Find Full Text PDF

Ecological dependencies - where organisms rely on other organisms for survival - are a ubiquitous feature of life on earth. Multicellular hosts rely on symbionts to provide essential vitamins and amino acids. Legume plants similarly rely on nitrogen-fixing rhizobia to convert atmospheric nitrogen to ammonia.

View Article and Find Full Text PDF

Increasing environmental concentrations of metals as a result of anthropogenic pollution are significantly changing many microbial communities. While there is evidence metal pollution can result in increased antibiotic resistance, the effects of metal pollution on the virulence of bacterial communities remains largely undetermined. Here, we experimentally test whether metal stress alters the virulence of bacterial communities.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is a growing threat to public health, global food security and animal welfare. Despite efforts in antibiotic stewardship, AMR continues to rise worldwide. Anthropogenic activities, particularly intensive agriculture, play an integral role in the dissemination of AMR genes within natural microbial communities - which current antibiotic stewardship typically overlooks.

View Article and Find Full Text PDF

Anthropogenic metal pollution can result in co-selection for antibiotic resistance and potentially select for increased virulence in bacterial pathogens. Metal-polluted environments can select for the increased production of siderophore molecules to detoxify non-ferrous metals. However, these same molecules also aid the uptake of ferric iron, a limiting factor for within-host pathogen growth, and are consequently a virulence factor.

View Article and Find Full Text PDF

Background: Iron is essential for almost all bacterial pathogens and consequently it is actively withheld by their hosts. However, the production of extracellular siderophores enables iron sequestration by pathogens, increasing their virulence. Another function of siderophores is extracellular detoxification of non-ferrous metals.

View Article and Find Full Text PDF

Bacteria with increased mutation rates (mutators) are common in chronic infections and are associated with poorer clinical outcomes, especially in the case of Pseudomonas aeruginosa infecting cystic fibrosis (CF) patients. There is, however, considerable between-patient variation in both P. aeruginosa mutator frequency and the composition of co-infecting pathogen communities.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) genes are often carried on broad host range plasmids, and the spread of AMR within microbial communities will therefore depend on the structure of bacteria–plasmid networks. Empirical and theoretical studies of ecological interaction networks suggest that network structure differs between communities that are predominantly mutualistic versus antagonistic, with the former showing more generalized interactions (i.e.

View Article and Find Full Text PDF

Ecological theory predicts interactions between species to become more positive under abiotic stress, while competition should prevail in more benign environments. However, experimental tests of this stress gradient hypothesis in natural microbial communities are lacking. We test this hypothesis by measuring interactions between 10 different members of a bacterial community inhabiting potting compost in the presence or absence of toxic copper stress.

View Article and Find Full Text PDF

Rapid within-species evolution can alter community structure, yet the mechanisms underpinning this effect remain unknown. Populations that rapidly evolve large amounts of phenotypic diversity are likely to interact with more species and have the largest impact on community structure. However, the evolution of phenotypic diversity is, in turn, influenced by the presence of other species.

View Article and Find Full Text PDF

Heterogeneity in resources is a ubiquitous feature of natural landscapes affecting many aspects of biology. However, the effect of environmental heterogeneity on the evolution of cooperation has been less well studied. Here, using a mixture of theory and experiments measuring siderophore production by the bacterium as a model for public goods based cooperation, we explore the effect of heterogeneity in resource availability.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) has emerged as one of the most pressing threats to public health. AMR evolution occurs in the clinic but also in the environment, where antibiotics and heavy metals can select and co-select for AMR. While the selective potential of both antibiotics and metals is increasingly well-characterized, experimental studies exploring their combined effects on AMR evolution are rare.

View Article and Find Full Text PDF

Disturbances can play a major role in biological invasions: by destroying biomass, they alter habitat and resource abundances. Previous field studies suggest that disturbance-mediated invader success is a consequence of resource influxes, but the importance of other potential covarying causes, notably the opening up of habitats, have yet to be directly tested. Using experimental populations of the bacterium , we determined the relative importance of disturbance-mediated habitat opening and resource influxes, plus any interaction between them, for invader success of two ecologically distinct morphotypes.

View Article and Find Full Text PDF

In an era of unprecedented environmental change, there have been increasing ecological and global public health concerns associated with exposure to anthropogenic pollutants. While there is a pressing need to remediate polluted ecosystems, human intervention might unwittingly oppose selection for natural detoxification, which is primarily carried out by microbes. We test this possibility in the context of a ubiquitous chemical remediation strategy aimed at targeting metal pollution: the addition of lime-containing materials.

View Article and Find Full Text PDF

Climate change, changing farming practices, social and demographic changes and rising levels of antibiotic resistance are likely to lead to future increases in opportunistic bacterial infections that are more difficult to treat. Uncovering the prevalence and identity of pathogenic bacteria in the environment is key to assessing transmission risks. We describe the first use of the Wax moth larva , a well-established model for the mammalian innate immune system, to selectively enrich and characterize pathogens from coastal environments in the South West of the UK.

View Article and Find Full Text PDF

Many organisms-notably microbes-are embedded within complex communities where cooperative behaviors in the form of excreted public goods can benefit other species. Under such circumstances, intraspecific interactions are likely to be less important in driving the evolution of cooperation. We first illustrate this idea with a simple theoretical model, showing that relatedness-the extent to which individuals with the same cooperative alleles interact with each other-has a reduced impact on the evolution of cooperation when public goods are shared between species.

View Article and Find Full Text PDF

Competition plays a crucial role in determining adaptation of species, yet we know little as to how adaptation is affected by the strength of competition. On the one hand, strong competition typically results in population size reductions, which can hamper adaptation owing to a shortage of beneficial mutations; on the other hand, specificity of adaptation to competitors may offset the negative evolutionary consequences of such population size effects. Here, we investigate how competition strength affects population fitness in the bacterium Our results demonstrate that strong competition constrains adaptation of focal populations, which can be partially explained by population size reductions.

View Article and Find Full Text PDF

Some microbial public goods can provide both individual and community-wide benefits, and are open to exploitation by non-producing species. One such example is the production of metal-detoxifying siderophores. Here, we investigate whether conflicting selection pressures on siderophore production by heavy metals - a detoxifying effect of siderophores, and exploitation of this detoxifying effect - result in a net increase or decrease.

View Article and Find Full Text PDF

Many prokaryote species are known to have fluid genomes, with different strains varying markedly in accessory gene content through the combined action of gene loss, gene gain via lateral transfer, as well as gene duplication. However, the evolutionary forces determining genome fluidity are not yet well understood. We here for the first time systematically analyse the degree to which this distinctive genomic feature differs between bacterial species.

View Article and Find Full Text PDF

The adaptive benefits of natural transformation, the active uptake of free DNA molecules from the environment followed by incorporation of this DNA into the genome, may be the improved response to selection resulting from increased genetic variation. Drawing analogies with sexual reproduction, transformation may be particularly beneficial when selection rapidly fluctuates during coevolution with virulent parasites ('the Red Queen Hypothesis'). Here we test this hypothesis by experimentally evolving the naturally transformable and recombinogenic species Acinetobacter baylyi with a cocktail of lytic phages.

View Article and Find Full Text PDF
Article Synopsis
  • Host-parasite interactions often see significant changes in host population sizes, and this study looks at how these variations influence the evolution between a bacterium and a virus.
  • Contrary to previous theories, the research found that phages (viruses that infect bacteria) quickly went extinct when competing with hosts that experienced large genetic bottlenecks, due to the random loss of sensitive bacteria necessary for the phages to survive and evolve.
  • The results highlight the crucial interplay between ecological factors and coevolutionary processes, showing how this relationship can change the expected outcomes of coevolution.
View Article and Find Full Text PDF

Pollen of the crop oilseed rape (Brassica napus, AACC) can cross-fertilize ovules of Brassica rapa (AA), which leads to an influx of unpaired C-chromosomes into wild B. rapa populations. The presence of such extra chromosomes is thought to be an indicator of introgression.

View Article and Find Full Text PDF

Background And Aims: Male-biased sex allocation commonly occurs in wind-pollinated hermaphroditic plants, and is often positively associated with size, notably in terms of height. Currently, it is not well established whether a corresponding pattern holds for dioecious plants: do males of wind-pollinated species exhibit greater reproductive allocation than females? Here, sexual dimorphism is investigated in terms of life history trade-offs in a dioecious population of the wind-pollinated ruderal herb Mercurialis annua.

Methods: The allocation strategies of males and females grown under different soil nutrient availability and competitive (i.

View Article and Find Full Text PDF