Publications by authors named "Elzbieta Sokol"

The authors wish to make the following corrections to this paper [1]: in Figure 4 the same gelscans were mistakenly pasted to illustrate splicing changes of: i) BIM in KIJ-265T and KIJ308T cells,and ii) MCL-1 in UOK171 and KIJ-265T [...

View Article and Find Full Text PDF

SRSF1, SRSF2 and hnRNP A1 are splicing factors that regulate the expression of oncogenes and tumor suppressors. SRSF1 and SRSF2 contribute to the carcinogenesis in the kidney. Despite their importance, the mechanisms regulating their expression in cancer are not entirely understood.

View Article and Find Full Text PDF

In our previous study we found altered expression of 19 adhesion-related genes in renal tumors. In this study we hypothesized that disturbed expression of adhesion-related genes could be caused by microRNAs: short, non-coding RNAs that regulate gene expression. Here, we found that expression of 24 microRNAs predicted to target adhesion-related genes was disturbed in renal tumors and correlated with expression of their predicted targets.

View Article and Find Full Text PDF

SRSF1 jest wielofunkcyjnym białkiem biorącym udział w procesach związanych z metabolizmem RNA. Następstwem zaburzeń ekspresji SRSF1, obserwowanych w wielu typach nowotworów, są nieprawidłowości w składaniu pre-mRNA, zmiany stabilności transkryptów i poziomu translacji onkogenów oraz genów supresorowych. Regulując różnicowe składanie transkryptów genów CCND1, RAC1, KLF6, BCL2L1, MCL1 oraz CASP9, SRSF1 indukuje zmiany w cyklu komórkowym, proliferacji i apoptozie.

View Article and Find Full Text PDF

SRSF7 is a SR splicing factor involved in the regulation of splicing and mRNA export of cancer-related genes. The mechanisms regulating the expression of SRSF7 are unknown. This study shows that SRSF7 expression in cancer cells is regulated by microRNAs: short, non-coding RNAs that bind to 3'UTR of target genes and downregulate their expression.

View Article and Find Full Text PDF

Serine and arginine rich splicing factor 2(SRSF2) belongs to the serine/arginine (SR)-rich family of proteins that regulate alternative splicing. Previous studies suggested that SRSF2 can contribute to carcinogenic processes. Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer, highly aggressive and difficult to treat, mainly due to resistance to apoptosis.

View Article and Find Full Text PDF