Publications by authors named "Elzbieta Jastrzebska"

Correction for 'A layered cancer-on-a-chip system for anticancer drug screening and disease modeling' by Magdalena Flont , , 2023, , 5486-5495, https://doi.org/10.1039/D3AN00959A.

View Article and Find Full Text PDF

Numerous synthetic polymers, imitating natural antimicrobial peptides, have demonstrated potent antimicrobial activity, positioning them as potential candidates for new antimicrobial drugs. However, the high activity of these molecules often comes at the cost of elevated toxicity against eukaryotic organisms. In this study, a series of cationic ionenes with varying molecular weights to assess the influence of polymer chain length on ionene activity is investigated.

View Article and Find Full Text PDF

The liver is one of the most important organs in the human body. It performs many important functions, including being responsible for the metabolism of most drugs, which is often associated with its drug-induced damage. Currently, there are no ideal pharmacological models that would allow the evaluation of the effect of newly tested drugs on the liver in preclinical studies.

View Article and Find Full Text PDF

Heart diseases are caused mainly by chronic oxygen insufficiency (hypoxia), leading to damage and apoptosis of cardiomyocytes. Research into the regeneration of a damaged human heart is limited due to the lack of cellular models that mimic damaged cardiac tissue. Based on the literature, nanofibrous mats affect the cardiomyocyte morphology and stimulate the growth and differentiation of cells cultured on them; therefore, nanofibrous materials can support the production of in vitro models that faithfully mimic the 3D structure of human cardiac tissue.

View Article and Find Full Text PDF

Investigating the potential of human cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) in in vitro heart models is essential to develop cardiac regenerative medicine. iPSC-CMs are immature with a fetal-like phenotype relative to cardiomyocytes in vivo. Literature indicates methods for enhancing the structural maturity of iPSC-CMs.

View Article and Find Full Text PDF

Two-dimensional (2D) cultures do not fully reflect the human organs' physiology and the real effectiveness of the used therapy. Therefore, three-dimensional (3D) models are increasingly used in bioanalytical science. Organ-on-a-chip systems are used to obtain cellular in vitro models, better reflecting the human body's in vivo characteristics and allowing us to obtain more reliable results than standard preclinical models.

View Article and Find Full Text PDF

Currently, numerous studies are conducted using nanofibers as a scaffold for culture cardiac cells; however, there still needs to be more research evaluating the impact of the physicochemical properties of polymer nanofibers on the structure and function of cardiac cells. We have studied how poly(-caprolactone) and polyurethane nanofibrous mats with different physicochemical properties influence the viability, morphology, orientation, and maturation of cardiac cells. For this purpose, the cells taken from different species were used.

View Article and Find Full Text PDF

Angiogenesis is the development of new blood vessels from pre-existing vasculature. Multiple factors control its course. Disorders of the distribution of angiogenic agents are responsible for development of solid tumors and its metastases.

View Article and Find Full Text PDF

Recent advances in the development of microfluidic systems for the culture of complex and three-dimensional cell, tissue, and organ models allow their use in toxicity studies and mimicking many diseases. These types of models are important because of the huge advantages over standard two-dimensional cell cultures: better mimicking of conditions and more reliable response to the tested drugs. This report presents a new approach to modeling skin cancer (melanoma-on-a-chip) and breast cancer (breast cancer-on-a-chip) using the microfluidic systems.

View Article and Find Full Text PDF

Breast cancer is one of the most common cancers among women. The development of new and effective therapeutic approaches in the treatment of breast cancer is an important challenge in modern oncology. Two-dimensional (2D) cell cultures are most often used in the study of compounds with potential anti-tumor nature.

View Article and Find Full Text PDF

Angiogenesis is the development of new blood vessels from the existing vasculature. Its malfunction leads to the development of cancers and cardiovascular diseases qualified by the WHO as a leading cause of death worldwide. A better understanding of mechanisms regulating physiological and pathological angiogenesis will potentially contribute to developing more effective treatments for those urgent issues.

View Article and Find Full Text PDF

The study concerns the influence of graphene monolayer, as a 2 D platform, on cell viability, cytoskeleton, adhesions sites andmorphology of mitochondria of keratinocytes (HaCaT) under static conditions. Based on quantitative and immunofluorescent analysis, it could be stated that graphene substrate does not cause any damage to membrane or disruption of other monitored parameters. Spindle poles and cytokinesis bridges indicating proliferation of cells on this graphene substrate were detected.

View Article and Find Full Text PDF

Nowadays, diabetes mellitus is one of the most common chronic diseases in the world. Current research on the treatment of diabetes combines many fields of science, such as biotechnology, transplantology or engineering. Therefore, it is necessary to develop new therapeutic strategies and preventive methods.

View Article and Find Full Text PDF

Regenerative medicine and stem cells could prove to be an effective solution to the problem of treating heart failure caused by ischemic heart disease. However, further studies on the understanding of the processes which occur during the regeneration of damaged tissue are needed. Microfluidic systems, which provide conditions similar to in vivo, could be useful tools for the development of new therapies using stem cells.

View Article and Find Full Text PDF

Type 2 diabetes is currently one of the most common metabolic diseases, affecting all ages worldwide. As the incidence of type 2 diabetes increases, a growing number of studies focus on islets of Langerhans. A three-dimensional research model that maps islet morphology and maintains hormonal balance in vivo is still needed.

View Article and Find Full Text PDF

The paper presents a newly designed microfluidic system that allows simulation of myocardial hypoxia by biochemical method. The geometry of the microsystem was designed in such a way, that quantitative fluorescent measurements using a spectrofluorometric plate reader was possible. Biochemical simulation of hypoxia was carried out using potent mitochondrial oxidative phosphorylation uncoupler-Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP).

View Article and Find Full Text PDF

Three-dimensional (3D) cellular models of cancer tissue are necessary tools to analyze new anticancer drugs under in vitro conditions. Diagnostics and treatment of ovarian cancer are major challenges for current medicine. In our report we propose a new three-dimensional (3D) cellular model of ovarian cancer which can mimic a fragment of heterogeneous cancer tissue.

View Article and Find Full Text PDF

Cases of type 2 diabetes mellitus have significantly increased in recent years. Researchers worldwide are combining their knowledge of biology, medicine, tissue engineering, and microtechnology to develop new effective treatments. An important aspect of current research is to develop of a complete model of three-dimensional pancreatic islets to test various factors that affect disease development and evaluate new therapies and drugs.

View Article and Find Full Text PDF
Article Synopsis
  • Stem cells are increasingly important in tissue engineering and regenerative medicine, but traditional differentiation methods are often slow and inefficient.
  • A new microbioanalytical method has been developed using a digitally controlled microdispenser combined with a Heart-on-a-chip system for faster differentiation of human mesenchymal stem cells into cardiac cells.
  • The study demonstrates that this microsystem can effectively shorten differentiation time and improve outcomes by mimicking the in vivo environment, making it a valuable tool for future regenerative medicine research.
View Article and Find Full Text PDF

Ovarian cancer belongs to the group of gynecological cancers and indicates the high resistance to many drugs used in standard anticancer therapy. The treatment of ovarian cancer is a big challenge for the present medicine. In our report we tested the effectiveness of the combination anticancer therapy against ovarian cells: human ovarian carcinoma (A2780) and human ovarian fibroblasts (HOF).

View Article and Find Full Text PDF

Background: Graphene oxide (GO) has unique physical and chemical properties that can be used in anticancer therapy - especially as a drug carrier. Graphene oxide, due to the presence of several hybrid layers of carbon atoms (sp2), has a large surface for highly efficient drug loading. In addition, GO with a large number of carboxyl, hydroxyl and epoxy groups on its surface, can charge various drug molecules through covalent bonds, hydrophobic interactions, hydrogen bonds and electrostatic interactions.

View Article and Find Full Text PDF
Article Synopsis
  • * It explores the mechanisms through which these materials work, including their antibacterial effects, ability to modulate the immune response, promote blood vessel growth, and remodel tissue.
  • * Findings suggest that combining graphene with MSCs could improve healing processes and help prevent infections at wound sites.
View Article and Find Full Text PDF

This up-to-date review summarizes the design and current fabrication strategies that have been employed in the area of mono- and multifunctional colloidal nanoparticles - nanocarriers well suited for photodynamic therapy (PDT) and diagnostic purposes. Rationally engineered photosensitizer (PS)-loaded nanoparticles may be achieved via either noncovalent (i.e.

View Article and Find Full Text PDF

Poly(dimethylsiloxane) (PDMS) is a material applicable for tissue and biomedical engineering, especially based on microfluidic devices. PDMS is a material used in studies aimed at understanding cell behavior and analyzing the cell adhesion mechanism. In this work, biological characterization of the modified PDMS surfaces based on cell attachment and toxicity assays was performed.

View Article and Find Full Text PDF

In recent years photodynamic therapy (PDT) has received widespread attention in cancer treatment due to its smaller surgical trauma, better selectivity towards tumor cells, reduced side effects and possibility of repeatable treatment. Since cancer is the second cause of death worldwide, scientists constantly seek for new potential therapeutic agents including nanotechnology-based photosensitizers used in PDT. The new-designed nanostructures must be carefully studied and well characterized what require analytically useful and powerful tools that enable real progress in nanoscience development.

View Article and Find Full Text PDF