Becker Muscular Dystrophy (BMD) is a rare X-linked recessive neuromuscular disorder frequently caused by in-frame deletions in the DMD gene that result in the production of a truncated, yet functional, dystrophin protein. The consequences of BMD-causing in-frame deletions on the organism are difficult to predict, especially in regard to long-term prognosis. Here, we employed CRISPR-Cas9 to generate a new Dmd del52-55 mouse model by deleting exons 52-55, resulting in a BMD-like in-frame deletion.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a disease with a life-threatening trajectory resulting from mutations in the dystrophin gene, leading to degeneration of skeletal muscle and fibrosis of cardiac muscle. The overwhelming majority of mutations are multiexonic deletions. We previously established a dystrophic mouse model with deletion of exons 52-54 in that develops an early-onset cardiac phenotype similar to DMD patients.
View Article and Find Full Text PDFTandem duplication mutations are increasingly found to be the direct cause of many rare heritable diseases, accounting for up to 10% of cases. Unfortunately, animal models recapitulating such mutations are scarce, limiting our ability to study them and develop genome editing therapies. Here, we describe the generation of a novel duplication mouse model, harboring a multi-exonic tandem duplication in the Dmd gene which recapitulates a human mutation.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a life-threatening neuromuscular disease caused by the lack of dystrophin, resulting in progressive muscle wasting and locomotor dysfunctions. By adulthood, almost all patients also develop cardiomyopathy, which is the primary cause of death in DMD. Although there has been extensive effort in creating animal models to study treatment strategies for DMD, most fail to recapitulate the complete skeletal and cardiac disease manifestations that are presented in affected patients.
View Article and Find Full Text PDFNeuromuscular disorders are often caused by heterogeneous mutations in large, structurally complex genes. Targeting compensatory modifier genes could be beneficial to improve disease phenotypes. Here we report a mutation-independent strategy to upregulate the expression of a disease-modifying gene associated with congenital muscular dystrophy type 1A (MDC1A) using the CRISPR activation system in mice.
View Article and Find Full Text PDFOverall survival remains very poor for patients diagnosed as having head and neck squamous cell carcinoma (HNSCC). Identification of additional biomarkers and novel therapeutic strategies are important for improving patient outcomes. Patient-derived xenografts (PDXs), generated by implanting fresh tumor tissue directly from patients into immunodeficient mice, recapitulate many of the features of their corresponding clinical cancers, including histopathological and molecular profiles.
View Article and Find Full Text PDFSplice-site defects account for about 10% of pathogenic mutations that cause Mendelian diseases. Prevalence is higher in neuromuscular disorders (NMDs), owing to the unusually large size and multi-exonic nature of genes encoding muscle structural proteins. Therapeutic genome editing to correct disease-causing splice-site mutations has been accomplished only through the homology-directed repair pathway, which is extremely inefficient in postmitotic tissues such as skeletal muscle.
View Article and Find Full Text PDFRare cancer stem cells (CSC) are proposed to be responsible for tumour propagation and re-initiation and are functionally defined by identifying tumour-initiating cells (TICs) using the xenotransplantation limiting dilution assay (LDA). While TICs in clear cell renal cell carcinoma (ccRCC) appeared rare in NOD/SCID/IL2Rγ(-/-) (NSG) mice, xenografts formed more efficiently from small tumour fragments, indicating the LDA underestimated ccRCC TIC frequency. Mechanistic interrogation of the LDA identified multiple steps that influence ccRCC TIC quantitation.
View Article and Find Full Text PDFClustered regularly interspaced short palindromic repeat (CRISPR) has arisen as a frontrunner for efficient genome engineering. However, the potentially broad therapeutic implications are largely unexplored. Here, to investigate the therapeutic potential of CRISPR/Cas9 in a diverse set of genetic disorders, we establish a pipeline that uses readily obtainable cells from affected individuals.
View Article and Find Full Text PDFCell surface proteins have a wide range of biological functions, and are often used as lineage-specific markers. Antibodies that recognize cell surface antigens are widely used as research tools, diagnostic markers, and even therapeutic agents. The ability to obtain broad cell surface protein profiles would thus be of great value in a wide range of fields.
View Article and Find Full Text PDFCharacterization of signaling pathways in embryonic stem cells is a prerequisite for future application of these cells to treat human disease and other disorders. Identification of tyrosine signaling cascades is of particular interest but is complicated by the relatively low levels of tyrosine phosphorylation in embryonic stem cells. These hurdles correlate with the primary limitations of mass spectrometry-based proteomics; namely, poor detection limit and dynamic range.
View Article and Find Full Text PDFMice expressing the KRN T cell receptor transgene and the MHC class II molecule A(g7) (K/BxN mice) develop severe inflammatory arthritis, and serum from these mice causes similar arthritis in a wide range of mouse strains, owing to pathogenic autoantibodies to glucose-6-phosphate isomerase (GPI). This model has been useful for the investigation of the development of autoimmunity (K/BxN transgenic mice) and particularly of the mechanisms by which anti-GPI autoantibodies induce joint-specific imflammation (serum transfer model). In this chaper, after a summary of findings from this model system, we describe detailed methods for the maintenance of a K/BxN colony, crossing of the relevant TCR and MHC genes to other strain backgrounds, evaluation of KRN transgenic T cells, measurement of anti-GPI antibodies, induction of arthritis by serum transfer, and clinical and histological evaluation of arthritis.
View Article and Find Full Text PDFCostimulatory signals received by diabetogenic T cells during priming by or upon secondary encounter with autoantigen are decisive in determining the outcome of autoimmune attack. The OX40-OX40 ligand (OX40L) costimulatory pathway is known to influence T cell responses, prompting us to examine its role in autoimmune diabetes. A null allele at OX40L completely prevented diabetes development in nonobese diabetic mice and strongly reduced its incidence in a TCR transgenic model (BDC2.
View Article and Find Full Text PDF