Signalling molecules and their cognate receptors are central components of the Metazoa endocrine system. Defining their presence or absence in extant animal lineages is critical to accurately devise evolutionary patterns, physiological shifts and the impact of endocrine disrupting chemicals. Here, we address the evolution of retinoic acid (RA) signalling in the Priapulida worm, Lamarck, 1816, an Ecdysozoa.
View Article and Find Full Text PDFTo appraise how evolutionary processes, such as gene duplication and loss, influence an organism's xenobiotic sensitivity is a critical question in toxicology. Of particular importance are gene families involved in the mediation of detoxification responses, such as members of the nuclear receptor subfamily 1 group I (NR1I), the pregnane X receptor (), and the constitutive androstane receptor (). While documented in multiple vertebrate genomes, and display an intriguing gene distribution.
View Article and Find Full Text PDFGlobally persistent man-made chemicals display ever-growing ecosystemic consequences, a hallmark of the Anthropocene epoch. In this context, the assessment of how lineage-specific gene repertoires influence organism sensitivity toward endocrine disruptors is a central question in toxicology. A striking example highlights the role of a group of compounds known as obesogens.
View Article and Find Full Text PDF